
1

Towards Open Source 3D Acceleration

For Nvidia Cards

Stéphane Marchesin

marchesin@icps.u-strasbg.fr

2

Introduction

■ Dependence on proprietary drivers
 Future window systems will be layered upon OpenGL
 3D applications
 3D heavily used in games

■ Proprietary Nvidia drivers
 No luck on non-x86 hardware
 Inability to fix bugs
 Long time support ?

3

Nvidia : the hardware

■ GeForce 6x00 (NV40)
 Multiple hardware contexts (since NV3 !)

➔ In the form of multiple command fifos
➔ At least 8 contexts

 OpenGL 2.0 hardware
➔ Powerful
➔ Complex

 No documentation available
➔ Source code used to be available (up to NV5)
➔ The “nv” DDX (all cards)
➔ The Utah GLX driver (up to NV18)
➔ The BeOS 3D driver (up to NV18)

4

The DRI/DRM model

■ DRM module protects access to the card
 In-kernel
 Low footprint
 Has to check each command for security

➔ Can be costly
➔ State tracking to avoid useless calls
➔ Complex implementation

■ DRI module makes most of the work
 User space
 Plugs into Mesa
 Builds command packets
 Makes kernel calls to submit commands to the DRM

5

The DRI/DRM model

■ DRM-managed command submission

DRM

Hardware

DRI

Mesa

Application
OpenGL callsOpenGL calls

DRI interface

Kernel calls

HW commands

6

Relaxing the DRI/DRM model

■ Nvidia hardware has multiple fifos
 DRM maps one fifo per client (RW)
 DRI client then has exclusive use of its fifo

➔ Can fill it as it likes
➔ Full OpenGL primitive submission in user-space
➔ No need for context switches
➔ No need for (some of the) mutex locks
➔ Of course, other things still need to be checked (DMA

accesses)
➔ DRM update not always needed for new functionality

7

Relaxing the DRI/DRM model

■ Full user-space command submission

DRM

Hardware

DRI

Mesa

Application
OpenGL callsOpenGL calls

DRI interface

HW commands

8

DRM at work

■ The DRM initalizes and setups the registers
■ Initialize the multiple rendering contexts
■ Setups a fifo when requested by a DRI client and

maps the fifo to the client
■ That's about it (lazy guy)

9

DRI at work

■ The DRI initializes, maps the fifo from the DRM
■ Primitive submission can then work without the

DRM's help
■ Full fifo control happens in user space

 No complicated code for context switching and

tracking
 No need for a kernel call

■ Emitting primitives
 DRI emits primitives to the fifo
 DRI flushes the fifo

10

DDX at work

■ Functionality needs to be added to the DDX
 Back/depth buffers
 Swapbuffers
 Cliprects
 ...

■ On top of the EXA patch
■ DDX is hardcoded to use context 0

 Always reserve this context

11

Reverse engineering

methodology
■ Need to figure out functionality for NV20 and later

cards
 How ?

DRM

Hardware

DRI

Mesa

Application
OpenGL callsOpenGL calls

DRI interface

HW commands

HW Commands are

here !

12

Reverse engineering

methodology
■ Solution

 Create an OpenGL process
 Find the fifo among the mappings
 Dump the fifo & registers contents
 Do something with the graphics pipeline

➔ glClear()
➔ glVertex()
➔ ...

 Compare the fifo & registers with the previous state
 Deduce functionality

13

Reverse engineering applied

■ Working with vertices
 Vertex submission

➔ Send 1 vertex
➔ Send 2 vertices
➔ ...
➔ Send X vertices
➔ Compare the results
➔ Deduce how to submit vertices

 Vertex description
➔ Send color vertices
➔ Send color+lighting vertices
➔ Send textured vertices
➔ ...
➔ Compare
➔ Deduce the vertex description format

14

Show me the code !

■ (Not yet working) code : http://nouveau.sf.net
■ Assumes NV40

15

Conclusions

■ Lots of work left
 Adapt the DRM to do client-exclusive mappings
 Contexts >0 need initialization code
 Add back/depth buffers

➔ Needs a memory manager
 Textures (needs some DMA support)

➔ Textures compete with pixmaps for video ram
➔ Once again, memory manager

 NV40 is being looked at
➔ Explore other chips
➔ Keep a unified driver

 Reverse engineering works
➔ But not all HW information can be found that way

16

Thanks !

