
Eurographics Symposium on Parallel Graphics and Visualization (2006), pp. 1–8
Alan Heirich, Bruno Raffin, and Luis Paulo dos Santos (Editors)

Dynamic load balancing for parallel volume rendering

Paper 1022

Abstract
Parallel volume rendering is one of the most efficient techniques to achieve real time visualization of large datasets
by distributing the data and the rendering process over a cluster of machines. However, when using level of detail
techniques or when zooming on parts of the datasets, load unbalance becomes a challenging issue that has not
been widely studied in the context of hardware-based rendering. In thispaper, we address this issue and show how
to achieve good load balancing for parallel level of detail volume rendering. We do so by dynamically distributing
the data among the rendering nodes according to the load of the previous frame. We illustrate the efficiency of our
technique on large datasets.

Categories and Subject Descriptors(according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation
– Viewing algorithms I.3.2 [Computer Graphics]: Graphics Systems – Distributed/network graphics

1. Introduction

With the advent of high performance interconnection net-
works in recent years, clusters have become an inexpensive
alternative to supercomputers. More recently, improvements
in consumer graphics hardware allow the use of clusters as a
cost effective solution for real-time visualization by adding
a consumer-grade graphics card to each node.

In the field of visualization, parallel rendering allows in-
teractive visualization of large datasets at a high quality over
a cluster of workstations, which could not be done on a sin-
gle machine. Techniques for doing parallel rendering are
usually classified into three groups according to the place
of the sorting phase in the graphics pipeline as done by Mol-
naret al [MCEF94]. If sorting is done prior to transforming
and rasterizing the primitives, the approach is of the sort-first
kind. If sorting is done between the transformation and ras-
terization phases, it is of the sort-middle kind. If sorting is
done after rasterizing the primitives, the approach is called
sort-last. However, only sort-first and sort-last techniques
make sense for volume rendering. In this paper, we focus
on sort-last techniques. We motivate this choice in section 2.

In the field of volume rendering, level of detail techniques
are widely used to visualize large datasets on a single ma-
chine [WWH∗00, PTCF02, LHJ99] by decomposing these
datasets into bricks, and by using level of detail techniques.
However, using such techniques together with distributed
rendering results in serious load unbalance. For instance,
when a static data distribution is chosen, if the user zooms

on parts of the model, one node might spend significantly
more rendering time than the others because its visible data
share is bigger, while other nodes could be idling because
their data share is not visible. Similarly, if a level of de-
tail approach is used, a single node might have to render its
data share at a higher resolution than the other nodes. Ob-
viously, in these two situations, load imbalance slows down
the whole rendering process and is not desirable. For this
reason, level of detail techniques have rarely been used in the
context of parallel volume rendering, while they could be ex-
tremely valuable to achieve visualization of very large scale
datasets. In this paper, we overcome this issue by propos-
ing a technique to compute an approximate load balancing
for sort-last parallel volume rendering. This technique uses
a time coherent dynamic data distribution to achieve good
load balance.

The paper is organized as follows : related works are in-
troduced in section 2. Section 3 describes our load balancing
algorithm in detail. Section 4 is dedicated to implementation
details and experimental results. We have experimented with
1GB datasets on a cluster with up to 16 nodes. Finally, con-
cluding remarks and open issues are discussed in section 5.

2. Related works and motivation

In the field of sequential volume rendering, numerous tech-
niques allow visualizing large datasets on a single machine
using simplification-based methods. Weileret al[WWH∗00]
and Lamaret al [LHJ99] use different resolution textures

submitted toEurographics Symposium on Parallel Graphics and Visualization (2006)

2 Paper1022/ Dynamic load balancing for parallel volume rendering

depending on factors like the distance to the observer or
the brick contents, thereby reducing the total requirements
for texture memory. This allows better frame rates and
larger datasets visualization. Gutheet al [GS04] use ad-
vanced techniques such as occlusion culling and empty
space skipping to further speed up rendering. Strengertet
al [SMW∗04] propose an efficient hierarchical sort-last vol-
ume rendering technique, and report interactive results on a
Myrinet interconnection network. Lamaret al [LHJ03] pro-
pose an efficient error computation technique for 3D data.
This technique first computes an histogram over each brick,
and subsequently uses the fact that evaluating the error over
an histogram of the values in a given brick is faster than eval-
uating the error at each voxel. In particular, this technique
can be used to quickly find the parts of the data that are not
visible with respect to the current transfer function by sim-
ply applying this transfer function to the histogram. How-
ever, using such techniques as-is in a parallel visualization
environment results in a serious load imbalance between the
computation nodes.

Parallel rendering techniques are usually classified into
three groups according to the classification done by Mol-
nar et al in [MCEF94] : sort-first, sort-middle and sort-last
rendering techniques. However, only sort-last and sort-first
apply in the parallel volume rendering context.

• In thesort-firstsituation, primitives are distributed among
the nodes at the beginning of the rendering pipeline, usu-
ally by splitting the screen into regions and associating
each region to one node. In this approach, load balancing
can be achieved by dynamically splitting the screen into
rectangular regions as done by Samantaet al [SZF∗99].
However, such a dynamic splitting does not withdraw
the main drawback of the sort-first approach, i.e. lots
of data redistribution happens as shown by Bethelet al
[BHPB03].

• In the sort-last situation, the data is split between the
nodes, and each node renders its own portion. Then, com-
positing takes the depth information into account to form
a final image from each node’s rendering. Sort-last vol-
ume rendering techniques are able to handle very large
datasets as demonstrated by Wylieet al [WPLM01] by
statically distributing these datasets among the nodes.
Compression has also been used to push the data size limit
further by Strengertet al [SMW∗04]. However, such sort-
last techniques do not have a good load balance between
the nodes. Hence when only some parts of the data are
visible, or when some parts of the data are rendered us-
ing a lower level of detail then others, serious load im-
balance can occur. Wanget al [WGS04] achieve dynamic
load balancing in the context of software based volume
rendering using a space-filling curve. However, such an
approach cannot be used directly on graphics hardware,
since it would result in lots of pixel readbacks. Leeet
al [LSH05] achieve static load balancing of volume ren-
dering by hierarchically subdividing the data.

Our objective is to propose a parallel visualization technique
for volume rendering which guarantees load balancing with-
out inducing too many data communications that would pe-
nalize the whole rendering process. Since sort-first volume
rendering imposes large data redistribution, we will focus on
sort-last techniques which do not require such data redistri-
bution.

The main issue is therefore to present a technique to
achieve load balancing in a sort-last context. The following
phases have to be taken into account in parallel rendering :
rasterization (including frame buffer readback), communi-
cation and compositing. When focusing on large dataset vi-
sualization, the frame time is dominated by the rendering
phases. This is the reason why we concentrate on the ras-
terization phase. Notice moreover that load balancing of the
communications and compositing phases has already been
achieved by Stompelet al in [SLM∗03]. To do so, the au-
thors split the rendered data into pixel spans, and then com-
pute a schedule of the compositing of these spans minimiz-
ing the imbalance between the nodes.

Level-of-detail techniques are crucial to efficient visual-
ization of large datasets. However, when combining level-of-
detail techniques and parallelism, the rendering time over the
nodes may vary widely : a node in charge of a higher detailed
area will take significantly more time to render its data than
a node in charge of a lower detailed area. In order to avoid
this load unbalance, we propose a technique which consists
in dynamically redistributing the data among the nodes, so
as to guarantee load balance. The contribution of this paper
is therefore to propose a load-balanced, out-of-core, parallel
level-of-detail technique. We also measure the optimal brick
size performance-wise for gigabyte-sized datasets.

3. Load balanced parallel rendering algorithm

Our algorithm overview is as follows : before rendering, the
data is split into bricks of equal size. During rendering, be-
fore each frame, an approximation of the rendering cost is
used to build the load balanced data distribution. Render-
ing is then performed and compositing is finally achieved
in a sort-last fashion. In the next two subsections we detail
the data distribution algorithm and then describe how load
balancing is achieved using a client-server approach. In par-
ticular, the evaluation of the rendering cost is of uttermost
importance to achieve good load balancing.

3.1. Data distribution and caching

The data is partitioned into equally-sized bricks of voxels,
and bricks that cross the dataset borders are padded with
empty voxels. These bricks are used as the basic data ele-
ment in the whole distributed graphics pipeline, from data
access up to the graphics hardware’s 3D textures. All these
bricks have the same dimensions, which have to be a power

submitted toEurographics Symposium on Parallel Graphics and Visualization (2006)

Paper1022/ Dynamic load balancing for parallel volume rendering 3

of two. This constraint is inherited from the graphics hard-
ware which imposes power of two for 3D texture sizes (as it
ls the case on the GeForce FX cards we use). Notice how-
ever that our method can handle bricks of arbitrary sizes.
In order to be able to compute gradients on the boundaries,
these bricks overlap by one voxel. The granularity we subse-
quently use for data distribution is one brick. Using a brick
granularity, we are thereby able to discard bricks that are
not visible with respect to the current transfer function or
the current viewing conditions. For example, if a brick is
fully transparent it can be discarded. To achieve this, we
have implemented the technique described by Lamaret al
in [LHJ03]. This technique associates an histogram of the
data with each brick. This histogram can then be convoluted
with the current transfer function to determine the brick’s
visibility. Similarly, bricks that fall outside the view frustum
can be discarded.

The bricks are dynamically distributed among the clients.
To achieve high performance in data distribution, we use a
multi-layered cache for the data bricks. This approach is de-
picted in figure1 : the data bricks are initially replicated from
the file server to each client’s hard disk, which makes sub-
sequent access to the data significantly faster than fetching
it through the network. Then at run time, bricks are fetched
out-of-core from disk and are cached at two different levels :
in system RAM, and in video RAM. The bricks are kept in
video memory following a LRU (least recently used) policy.

Figure 1: Hierarchical cache layout

3.2. Load balancing

To achieve load balancing, we need to evaluate the rendering
cost, that is to quantify the workload for rendering specific
parts of the dataset. Finding such a quantification function is
very complex. A series of benchmarks have been conducted
in order to find the influence of the visualization parameters
(texture size, screen size, texture contents, viewing angle,
visibility of the data...) on the rendering time. Some of the
results are summarized in figure2, and show that the render-
ing time cannot be easily predicted. In particular, the viewing
angle can affect rendering time by a factor of more than 3.
Similarly, the viewing distance is not easily correlated to the
rendering time for a given brick. Therefore, it is impractical
to predict an accurate cost function using the visualization

parameters. Thus, instead of trying to predict the workload,
we use the rendering time of the previous frame as an esti-
mation of the cost, and use it to adjust the load balancing for
the next frame.

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 0 50 100 150 200 250 300 350

R
en

de
rin

g
tim

e
in

 m
s

Viewing angle

Distance 50
Distance 60
Distance 80

Distance 100
Distance 120
Distance 150
Distance 200

Figure 2: The rendering time for a brick, depending on two
viewing parameters (angle and distance)

Our load balancing technique is based on a kd-tree de-
composition of the data space. A kd-tree is a binary tree
where at each level the data is split along a plane which is
orthogonal to one of the base axes (Ox,Oy,Oz). The data is
split along each of these axes in an alternating fashion. If
the depth of the tree is larger than 3, the splitting planes are
used circularly. This ensures temporal locality of the decom-
position when the tree is rebalanced. Changing the plane di-
rection at the same level of the tree between two subsequent
frames would result in a lot of data redistribution, and thus
is avoided.

The algorithm is implemented in a client-server fashion as
depicted on figure3. The server’s role is to build the kd-tree
while the clients are in charge of rendering and composit-
ing. Each client holds a portion of the data which is a par-
allelepiped set of bricks that we call azone. Initially, since
there is no information on the rendering times, the server se-
tups the kd-tree so that it decomposes the data into equally-
sizedzones. Then, after each rendered image, the rendering
and readback times are communicated back from the clients
to the server, which uses them to re-balance the kd-tree.
Once the tree has been entirely traversed, the server sends
the data distribution to each of the clients by sending the ex-
tremal points defining thezone. Each client loads the appro-
priate bricks, proceeds to render itszoneand finally performs
the compositing on the video buffers using the binary-swap
sort-last algorithm proposed by Maet al [MPHK94]. Since
the zonesgenerated by the Kd-tree are all parallelepipeds,
and thus are all convex, compositing is trivially achieved by
sorting the buffers generated by the clients according to their
distance to the observer. The resulting frame is then sent to
the server for final display.

submitted toEurographics Symposium on Parallel Graphics and Visualization (2006)

4 Paper1022/ Dynamic load balancing for parallel volume rendering

Figure 3: Overview of the load balancing technique over the
course of one frame

Let us now detail how the costs are used on the kd-tree to
rebalance the load. The rendering time information is added
to each kd-tree node : each leaf node is associated with a
client and holds the actual cost for itszone, and each inter-
nal tree node holds the sum of the costs for its sub-tree. We
use an additive metric to compute the cost of an internal tree
node because rendering costs are additive. That is, we con-
sider that a given workload can be spread on a number of
nodes, and the sum of the computation times on these nodes
is the same as the original workload computation time. In-
deed, if a client were to render all the bricks associated with
a subtree, the rendering time would be the sum of the ren-
dering times of the tree leaves. This assertion has been ob-
served experimentally for hardware-based graphics render-
ing, as long as the volume of data can be held in graphics
memory. The purpose of our algorithm is therefore to have
balanced costs on all the leaf nodes, thereby achieving good
load balance.

Initially, since there is no rendering cost information, the
server sets the same cost for all the nodes, as shown on figure
4 for eight clients. Then, after the initial frame is rendered
and for all subsequent frames, the client nodes communicate
back the rendering costs to the server, which places them on
the leaf nodes of the kd-tree. The costs are then propagated
by adding them upwards the tree as shown on figure4 and
the server uses these costs to rebalance the kd-tree. The tree
is parsed using a depth-first traversal during which each in-
ternal node is examined and balanced according to the cost
of its children in the following way : the rendering cost for
thezonesof the two children are compared and the separat-
ing plane between these twozonesis moved by one slice of
bricks in order to reduce the cost of the most expensivezone
and correlatively increase the cost of the cheapest one. The
plane is only moved by one slice at a time to avoid caus-
ing too much data loading for each frame and also to pre-
serve temporal data coherency. Thereby, the algorithm ini-

tially converges towards a balanced state in a small number
of frames, and subsequent adjustments are small enough to
avoid disturbing real time rendering.

Figure5 illustrates the technique. This figure shows two
subsequent frames and the corresponding brick decomposi-
tion (in gray), kd-trees and resulting data distributions. In a
depth-first traversal, let us first consider node I and its two
children. Since the cost for A is bigger than the cost for B,
the kd-tree splitting plane betweenzonesA and B (depicted
in green on figure5) is moved by one slice of bricks towards
A to reduce the workload for A and increase the workload
for B. This shift is realized along the plane orthogonal toOx.
In the same way, when considering node J and its two chil-
dren, because node D is more expensive than node C, the
plane is moved towards D (as shown in dark blue on figure
5). Moving up the tree and considering node M, the algo-
rithm checks the costs of nodes I and J, and since the cost of
J is larger than that of I, the plane orthogonal toOz(depicted
in yellow on the figure) is moved towards I. Node N is treated
the same way. Then at the next step when moving up to node
O, the plane orthogonal toOy (shown in orange on the fig-
ure) is moved toward N since the cost of N is larger than that
of M. The resulting data distribution is used to compute the
next frame. The corresponding renderings are shown on fig-
ure6, with each node drawing in a different color in order to
highlight the respectivezones.

Figure 4: Propagating the load values by adding them up-
wards the tree

4. Implementation and results

4.1. Implementation

We have implemented our algorithm in C++. The communi-
cation layer was written using the socket API, and we use
OpenGL for rendering. Since the rendering phase mainly
takes place on the GPU and the communication phase is
handled by the CPU, it makes sense to overlap them. To
achieve good overlapping between rendering and communi-
cation, each node runs three threads. The first thread handles

submitted toEurographics Symposium on Parallel Graphics and Visualization (2006)

Paper1022/ Dynamic load balancing for parallel volume rendering 5

Figure 5: Load balancing the kd-tree according to the cost
function during two subsequent frames

rendering ; the second thread handles compositing and com-
munication and the third thread handles data loading. As fig-
ure 7 shows, using threads for the rendering and communi-
cation processes allows efficient overlapping of the commu-
nication phase with the rendering phase. The high-latency
network-bound communication phase mainly uses the net-
work card, while the GPU-bound rendering phase uses the
GPU exclusively for rendering. Thus, we overlap these two
phases by creating one thread for each of them, which re-
sults in a speedup even on a single CPU machine. This is
especially worthy since both communication and rendering
can be blocking operations that would otherwise slow down
rendering. Another thread is created which asynchronously
fetches the data. The compositing algorithm used is the
binary-swap [MPHK94] technique with bounding box op-
timization.

To achieve out-of-core data loading and memory caching,
we use the mmap() system call to access to the datasets on
each of the nodes. We have found mmap() to be significantly
faster than accessing the data file randomly using the fopen()
and fseek() calls.

4.2. Results

We have tested our algorithm over a cluster of machines run-
ning Linux connected by a gigabit ethernet network. The
hardware configuration details are described in table1. To
improve the gigabit ethernet network performance, we have
enabled jumbo frames on the switch and on the machines

Figure 6: Resulting rendering from the previous load bal-
ancing operation. Top : unbalanced. Bottom : balanced.
Each client is configured to draw in a different color

Figure 7: Classical (left) vs threaded (right) approach

used for the test, and we have increased the size of the send
and receive queues for the network interfaces to 2000, as
well as the size of the kernel network memory buffers to
1 megabyte, and we have disabled the selective acknowl-

submitted toEurographics Symposium on Parallel Graphics and Visualization (2006)

6 Paper1022/ Dynamic load balancing for parallel volume rendering

edge (sack) algorithm. To achieve lower latency, we have
disabled the nagle algorithm by setting the TCP_NODELAY
socket option. All tests were conducted using a 1 gigabyte
(1024× 1024× 1024 voxels) geological dataset obtained
from X-Ray imaging. This dataset depicts a geological core.
All renderings were done into a 1024*768 viewport.

Component Type

CPU 1*Athlon XP 3000+
Memory 1GB
Network Gigabit Ethernet

Network card Intel pro 1000 MT
Graphics card GeForce FX 5900 XT

Graphics memory 128 MB

Table 1: Hardware configuration of a cluster node

Figure8 demonstrates the scalability of our implementa-
tion by showing the average rendering times over a precom-
puted path for 2, 4, 8 and 16 nodes.

 0

 100

 200

 300

 400

 500

 600

 700

16842

A
ve

ra
ge

 fr
am

e
re

nd
er

in
g

tim
e

in
 m

s

Number of rendering nodes

Geological dataset (1024x1024x1024)
Optimal time with a linear speedup

Figure 8: Rendering times for the 1GB geological dataset

Figure9 compares threaded vs unthreaded versions of the
code. Using a threaded approach results in a speedup be-
tween approximately 5% and 10%. It is interesting to notice
the influence of threading with respect to the network jitter-
ing. With the non threaded approach, peaks in the graph are
only going upwards, while in the threaded approach, a peak
upwards is followed by a peak downwards. This is because
the threaded approach is able to compute the next frame dur-
ing the high network latency period, and thus is able to send
the frame over the network as soon as the network is ready,
thus resulting in a downward spike.

We have tested different brick sizes (32× 32× 32, 64×
32×32, 64×64×32, 64×64×64 and 128×64×64) in
order to find the right balance between small bricks (which
allow finer-grained load balancing but are more costly since
there is a per-brick overhead) and large bricks (which have
less overhead but have a coarser load balancing granularity).

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250

R
en

de
rin

g
tim

e
in

 m
s

Frame number

16 nodes, unthreaded
16 nodes, threaded

Figure 9: Threaded vs. unthreaded performance

Figure10 shows these measurements taken over a precom-
puted path which starts far away from the data viewing the
full set, and zooms on small parts. These results show that a
brick size of 64×64×64 is a good choice since it results in
the best performance.

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100 120 140 160

R
en

de
rin

g
tim

e
in

 m
s

Frame number

32x32x32 bricks
64x32x32 bricks
64x64x32 bricks
64x64x64 bricks

128x64x64 bricks

Figure 10: The influence of the brick size

To show the influence of load balancing in the context
of parallel volume rendering, we ran the same camera path
that zooms on the model, with and without our load balanc-
ing technique, and using 8 and 16 nodes. As the observer
gets closer to the model, the bigger the load imbalance is,
and the more relevant a load balancing techniques becomes.
These results are shown on figure11. The balanced algo-
rithm shows good performance since in the best case it re-
duces the frame rendering time by a factor roughly equal to
4. Moreover, it shows that 8 processors with load balanc-
ing outperform 16 processors without load balancing. This
is due to the choice of the path which zooms on parts of the
data : as the observer gets closer to the object, only a fraction
of the data remains visible. Thus, in an unbalanced approach,
this results in most of the clients having almost nothing to

submitted toEurographics Symposium on Parallel Graphics and Visualization (2006)

Paper1022/ Dynamic load balancing for parallel volume rendering 7

render due to the invisibility of theirzone. Obviously, only a
few processors are then in charge of most of the actual ren-
dering which results in slowdowns. On the various curves
random peaks occur at some points. This is mainly due to
network jittering. Such peaks, when their magnitude is large
enough, are noticeable by the user, and could probably be re-
moved using a dedicated interconnection network. Another
remarkable result of figure11 is that for the balanced algo-
rithm 16 nodes outperform 8 nodes by a factor bigger than
2. We attribute this to the fact that the 1GB dataset does not
fit within the 8 card’s video memory, and thus cause texture
trashing. On the other hand with 16 nodes the dataset fits
into the video cards memory completely and thus no tex-
ture uploads have to take place. Figure12 presents a per-
node breakup of the rendering time, showing that in the non-
balanced case, a single node (node 5) is in charge of most
of the rendering work, while in the balanced case, the work-
load has been spread among all the nodes, thus resulting in
a speedup.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200

R
en

de
rin

g
tim

e
in

 m
s

Frame number

16 cpu, load balancing
8 cpu, load balancing

16 cpu, no load balancing
8 cpu, no load balancing

Figure 11: The influence of load balancing when zooming
on part of the data

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

87654321

C
om

pu
ta

tio
n

tim
e

in
 m

s

Node number

Rendering time with load balancing
Rendering time without load balancing

Figure 12: Balanced vs unbalanced breakup of the render-
ing times

Finally, thanks to our approach, we were able to render
the full dataset at interactive frame rates while keeping the
high detail of geological structures, as shown on figure13.
Interactive frame rates of approximately 5 frames per sec-
ond are achieved using preintegrated rendering and shading
when viewing the gigabyte dataset. Such frame rates are ob-
tained even during close-up examinations, as opposed to ap-
proximately 1 frame per second with the non balanced ap-
proach. Figure14 shows the load balanced decomposition
obtained using the 256×256×256 bonsai dataset.

Figure 13: Rendering examples for the geological dataset.
Top : full dataset. Bottom : close-up on small structures

5. Conclusions and future works

We have presented a method for load balancing parallel vol-
ume rendering which ensures good load balance when used
together with level of detail or when viewing only parts
of a large dataset. This method relies on two points which
are tightly coupled : a load balancing technique and a data
caching and prediction technique based on a kd-tree de-
composition. We also manage to totally avoid any prepro-
cessing phase which could be prohibitive given the size of

submitted toEurographics Symposium on Parallel Graphics and Visualization (2006)

8 Paper1022/ Dynamic load balancing for parallel volume rendering

Figure 14: Load balanced decomposition of the bonsai
dataset.

the datasets. This method proves particularly efficient when
zooming on large datasets, or when viewing parts of out-of-
core datasets.

Further improvements to our technique are possible.
Thanks to our out-of-core data caching and prefetching sys-
tem, our approach would suit very well to temporal datasets.
Also, since it automatically adapts the workload to each
nodes computing power, we would like to experiment our
load balancing technique on heterogeneous clusters. In par-
ticular, we think our technique could handle a network of
heterogeneous machines without needing to explicitly mea-
sure the respective performance of the nodes, but by adapt-
ing the respective computation loads for each node on the
fly.

References

[BHPB03] BETHEL E. W., HUMPHREYS G., PAUL

B. E., BREDERSONJ. D.: Sort-first, distributed memory
parallel visualization and rendering. InIEEE Symposium
on Parallel and Large-Data Visualization and Graphics
(2003), pp. 41–50.

[GS04] GUTHE S., STRASSERW.: Advanced Techniques
for High-Quality Multi-Resolution Volume Rendering.
Computers & Graphics 28, 1 (Feb. 2004), 51–58.

[LHJ99] LAMAR E., HAMANN B., JOY K. I.: Multires-
olution techniques for interactive texture-based volume
visualization. InProceedings of the IEEE Visualization
conference(1999), D. Ebert M. G., Hamann B., (Eds.),
pp. 355–362.

[LHJ03] LAMAR E. C., HAMANN B., JOY K. I.: Effi-
cient Error Calculation for Multiresolution Texture-Based
Volume Visualization. Springer-Verlag, Heidelberg, Ger-
many, 2003, pp. 51–62.

[LSH05] LEE W.-J., SRINI V. P., HAN T.-D.: Adaptive
and scalable load balancing scheme for sort-last parallel
volume rendering on gpu clusters, 2005.

[MCEF94] MOLNAR S., COX M., ELLSWORTH D.,
FUCHS H.: A sorting classification of parallel rendering.
IEEE Comput. Graph. Appl. 14, 4 (1994), 23–32.

[MPHK94] MA K.-L., PAINTER J. S., HANSEN C. D.,
KROGH M. F.: Parallel volume rendering using binary-
swap compositing. IEEE Comput. Graph. Appl. 14, 4
(1994), 59–68.

[PTCF02] PLATE J., TIRTASANA M., CARMONA R.,
FRÖHLICH B.: Octreemizer: a hierarchical approach for
interactive roaming through very large volumes. InPro-
ceedings of the symposium on Data Visualisation 2002
(2002), Eurographics Association, pp. 53–ff.

[SLM∗03] STOMPEL A., LUM E., MA K.-L., AHRENS

J., PATCHETT J.: SLIC: Scheduled linear image com-
positing for parallel vollume rendering. Parallel Visual-
ization and Graphics 2003, IEEE.

[SMW∗04] STRENGERT M., MAGALLÓN M.,
WEISKOPF D., GUTHE S., ERTL T.: Hierarchical
visualization and compression of large volume datasets
using gpu clusters. InEGPGV(2004), pp. 41–48.

[SZF∗99] SAMANTA R., ZHENG J., FUNKHOUSERT., LI

K., SINGH J. P.: Load balancing for multi-projector ren-
dering systems. InHWWS ’99: Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS workshop on Graphics
hardware (New York, NY, USA, 1999), ACM Press,
pp. 107–116.

[WGS04] WANG C., GAO J., SHEN H.-W.: Parallel mul-
tiresolution volume rendering of large data sets with error-
guided load balancing. InEGPGV(2004), pp. 23–30.

[WPLM01] WYLIE B., PAVLAKOS C., LEWIS V.,
MORELAND K.: Scalable rendering on pc clusters.IEEE
Comput. Graph. Appl. 21, 4 (2001), 62–70.

[WWH∗00] WEILER M., WESTERMANN R., HANSEN

C., ZIMMERMANN K., ERTL T.: Level-of-detail volume
rendering via 3d textures. InVVS ’00: Proceedings of
the 2000 IEEE symposium on Volume visualization(New
York, NY, USA, 2000), ACM Press, pp. 7–13.

submitted toEurographics Symposium on Parallel Graphics and Visualization (2006)

