
The Problem AppStream Listaller Conclusion

AppStream & Listaller

Matthias Klumpp
mak@debian.org

matthias@tenstral.net

February 2014

mailto:mak@debian.org
mailto:matthias@tenstral.net

The Problem AppStream Listaller Conclusion

Who am I?

PackageKit Developer
Debian Developer
Contributor to KDE, GNOME
AppStream and Listaller maintainer

The Problem AppStream Listaller Conclusion

Outline of the Talk

1 The Problem

2 AppStream

3 Listaller

4 Conclusion

The Problem AppStream Listaller Conclusion

What is wrong with application management?

Content of distribution’s software repositories is displayed in
form of packages

Unclear for non-technical users: What is a package? Why are
there so many of them?

Existing software-centers are distribution specific and not well
integrated with their desktop environments
Applications are not presented well to the user

localization missing, bad or no screenshots, missing urls,
inconsistencies between distributions, ...

No interaction possible
We want user ratings, reviews, maybe an easy way to report
bugs in the software-center, etc.

The Problem AppStream Listaller Conclusion

What is wrong with application management?

Content of distribution’s software repositories is displayed in
form of packages

Unclear for non-technical users: What is a package? Why are
there so many of them?

Existing software-centers are distribution specific and not well
integrated with their desktop environments
Applications are not presented well to the user

localization missing, bad or no screenshots, missing urls,
inconsistencies between distributions, ...

No interaction possible
We want user ratings, reviews, maybe an easy way to report
bugs in the software-center, etc.

The Problem AppStream Listaller Conclusion

What is wrong with application management?

Content of distribution’s software repositories is displayed in
form of packages

Unclear for non-technical users: What is a package? Why are
there so many of them?

Existing software-centers are distribution specific and not well
integrated with their desktop environments
Applications are not presented well to the user

localization missing, bad or no screenshots, missing urls,
inconsistencies between distributions, ...

No interaction possible
We want user ratings, reviews, maybe an easy way to report
bugs in the software-center, etc.

The Problem AppStream Listaller Conclusion

What is wrong with application management?

Content of distribution’s software repositories is displayed in
form of packages

Unclear for non-technical users: What is a package? Why are
there so many of them?

Existing software-centers are distribution specific and not well
integrated with their desktop environments
Applications are not presented well to the user

localization missing, bad or no screenshots, missing urls,
inconsistencies between distributions, ...

No interaction possible
We want user ratings, reviews, maybe an easy way to report
bugs in the software-center, etc.

The Problem AppStream Listaller Conclusion

What is wrong with application management?

Content of distribution’s software repositories is displayed in
form of packages

Unclear for non-technical users: What is a package? Why are
there so many of them?

Existing software-centers are distribution specific and not well
integrated with their desktop environments
Applications are not presented well to the user

localization missing, bad or no screenshots, missing urls,
inconsistencies between distributions, ...

No interaction possible
We want user ratings, reviews, maybe an easy way to report
bugs in the software-center, etc.

The Problem AppStream Listaller Conclusion

What is wrong with application management?

Content of distribution’s software repositories is displayed in
form of packages

Unclear for non-technical users: What is a package? Why are
there so many of them?

Existing software-centers are distribution specific and not well
integrated with their desktop environments
Applications are not presented well to the user

localization missing, bad or no screenshots, missing urls,
inconsistencies between distributions, ...

No interaction possible
We want user ratings, reviews, maybe an easy way to report
bugs in the software-center, etc.

The Problem AppStream Listaller Conclusion

What is wrong with application management?

Content of distribution’s software repositories is displayed in
form of packages

Unclear for non-technical users: What is a package? Why are
there so many of them?

Existing software-centers are distribution specific and not well
integrated with their desktop environments
Applications are not presented well to the user

localization missing, bad or no screenshots, missing urls,
inconsistencies between distributions, ...

No interaction possible
We want user ratings, reviews, maybe an easy way to report
bugs in the software-center, etc.

The Problem AppStream Listaller Conclusion

What is wrong with application distribution?

PPAs/Repositories are insecure: 3rd-party applications are
installed with root permission, may override system
components, break distribution upgrades, ...
Handling of PPAs is not very simple for users
PPAs are distribution-specific: Many 3rd-party apps are
available for e.g. Ubuntu, while other distributions need their
own repos
PPAs have a complex structure and are an overkill if people
just want to distribute an app on Linux
Binary installers don’t integrate well and are difficult to
handle. If executed as root, they are a potential security risk

We need a simple and secure cross-desktop solution to install
3rd-party applications, which integrates well with the rest of the
system

The Problem AppStream Listaller Conclusion

What is wrong with application distribution?

PPAs/Repositories are insecure: 3rd-party applications are
installed with root permission, may override system
components, break distribution upgrades, ...
Handling of PPAs is not very simple for users
PPAs are distribution-specific: Many 3rd-party apps are
available for e.g. Ubuntu, while other distributions need their
own repos
PPAs have a complex structure and are an overkill if people
just want to distribute an app on Linux
Binary installers don’t integrate well and are difficult to
handle. If executed as root, they are a potential security risk

We need a simple and secure cross-desktop solution to install
3rd-party applications, which integrates well with the rest of the
system

The Problem AppStream Listaller Conclusion

What is wrong with application distribution?

PPAs/Repositories are insecure: 3rd-party applications are
installed with root permission, may override system
components, break distribution upgrades, ...
Handling of PPAs is not very simple for users
PPAs are distribution-specific: Many 3rd-party apps are
available for e.g. Ubuntu, while other distributions need their
own repos
PPAs have a complex structure and are an overkill if people
just want to distribute an app on Linux
Binary installers don’t integrate well and are difficult to
handle. If executed as root, they are a potential security risk

We need a simple and secure cross-desktop solution to install
3rd-party applications, which integrates well with the rest of the
system

The Problem AppStream Listaller Conclusion

What is wrong with application distribution?

PPAs/Repositories are insecure: 3rd-party applications are
installed with root permission, may override system
components, break distribution upgrades, ...
Handling of PPAs is not very simple for users
PPAs are distribution-specific: Many 3rd-party apps are
available for e.g. Ubuntu, while other distributions need their
own repos
PPAs have a complex structure and are an overkill if people
just want to distribute an app on Linux
Binary installers don’t integrate well and are difficult to
handle. If executed as root, they are a potential security risk

We need a simple and secure cross-desktop solution to install
3rd-party applications, which integrates well with the rest of the
system

The Problem AppStream Listaller Conclusion

What is wrong with application distribution?

PPAs/Repositories are insecure: 3rd-party applications are
installed with root permission, may override system
components, break distribution upgrades, ...
Handling of PPAs is not very simple for users
PPAs are distribution-specific: Many 3rd-party apps are
available for e.g. Ubuntu, while other distributions need their
own repos
PPAs have a complex structure and are an overkill if people
just want to distribute an app on Linux
Binary installers don’t integrate well and are difficult to
handle. If executed as root, they are a potential security risk

We need a simple and secure cross-desktop solution to install
3rd-party applications, which integrates well with the rest of the
system

The Problem AppStream Listaller Conclusion

What is wrong with application distribution?

PPAs/Repositories are insecure: 3rd-party applications are
installed with root permission, may override system
components, break distribution upgrades, ...
Handling of PPAs is not very simple for users
PPAs are distribution-specific: Many 3rd-party apps are
available for e.g. Ubuntu, while other distributions need their
own repos
PPAs have a complex structure and are an overkill if people
just want to distribute an app on Linux
Binary installers don’t integrate well and are difficult to
handle. If executed as root, they are a potential security risk

We need a simple and secure cross-desktop solution to install
3rd-party applications, which integrates well with the rest of the
system

The Problem AppStream Listaller Conclusion

What is wrong with application distribution?

PPAs/Repositories are insecure: 3rd-party applications are
installed with root permission, may override system
components, break distribution upgrades, ...
Handling of PPAs is not very simple for users
PPAs are distribution-specific: Many 3rd-party apps are
available for e.g. Ubuntu, while other distributions need their
own repos
PPAs have a complex structure and are an overkill if people
just want to distribute an app on Linux
Binary installers don’t integrate well and are difficult to
handle. If executed as root, they are a potential security risk

We need a simple and secure cross-desktop solution to install
3rd-party applications, which integrates well with the rest of the
system

The Problem AppStream Listaller Conclusion

Two independent projects
AppStream

Cross-distro specifications for building
software-center applications
Metadata / database specs for distributors
Some (optional) new metadata for upstream projects
Interactive features (Ratings & Reviews, ...)

Listaller
Generates cross-distro application packages
Tools for app developers to make their app work on
many distros
Additional specs to enhance “component metadata”
in distributions
Optional component, requires PackageKit (and
ideally AppStream) to work

The Problem AppStream Listaller Conclusion

Two independent projects
AppStream

Cross-distro specifications for building
software-center applications
Metadata / database specs for distributors
Some (optional) new metadata for upstream projects
Interactive features (Ratings & Reviews, ...)

Listaller
Generates cross-distro application packages
Tools for app developers to make their app work on
many distros
Additional specs to enhance “component metadata”
in distributions
Optional component, requires PackageKit (and
ideally AppStream) to work

The Problem AppStream Listaller Conclusion

Two independent projects
AppStream

Cross-distro specifications for building
software-center applications
Metadata / database specs for distributors
Some (optional) new metadata for upstream projects
Interactive features (Ratings & Reviews, ...)

Listaller
Generates cross-distro application packages
Tools for app developers to make their app work on
many distros
Additional specs to enhance “component metadata”
in distributions
Optional component, requires PackageKit (and
ideally AppStream) to work

The Problem AppStream Listaller Conclusion

Two independent projects
AppStream

Cross-distro specifications for building
software-center applications
Metadata / database specs for distributors
Some (optional) new metadata for upstream projects
Interactive features (Ratings & Reviews, ...)

Listaller
Generates cross-distro application packages
Tools for app developers to make their app work on
many distros
Additional specs to enhance “component metadata”
in distributions
Optional component, requires PackageKit (and
ideally AppStream) to work

The Problem AppStream Listaller Conclusion

Two independent projects
AppStream

Cross-distro specifications for building
software-center applications
Metadata / database specs for distributors
Some (optional) new metadata for upstream projects
Interactive features (Ratings & Reviews, ...)

Listaller
Generates cross-distro application packages
Tools for app developers to make their app work on
many distros
Additional specs to enhance “component metadata”
in distributions
Optional component, requires PackageKit (and
ideally AppStream) to work

The Problem AppStream Listaller Conclusion

Two independent projects
AppStream

Cross-distro specifications for building
software-center applications
Metadata / database specs for distributors
Some (optional) new metadata for upstream projects
Interactive features (Ratings & Reviews, ...)

Listaller
Generates cross-distro application packages
Tools for app developers to make their app work on
many distros
Additional specs to enhance “component metadata”
in distributions
Optional component, requires PackageKit (and
ideally AppStream) to work

The Problem AppStream Listaller Conclusion

Two independent projects
AppStream

Cross-distro specifications for building
software-center applications
Metadata / database specs for distributors
Some (optional) new metadata for upstream projects
Interactive features (Ratings & Reviews, ...)

Listaller
Generates cross-distro application packages
Tools for app developers to make their app work on
many distros
Additional specs to enhance “component metadata”
in distributions
Optional component, requires PackageKit (and
ideally AppStream) to work

The Problem AppStream Listaller Conclusion

Two independent projects
AppStream

Cross-distro specifications for building
software-center applications
Metadata / database specs for distributors
Some (optional) new metadata for upstream projects
Interactive features (Ratings & Reviews, ...)

Listaller
Generates cross-distro application packages
Tools for app developers to make their app work on
many distros
Additional specs to enhance “component metadata”
in distributions
Optional component, requires PackageKit (and
ideally AppStream) to work

The Problem AppStream Listaller Conclusion

AppInstaller meeting 2011

Fedora, Debian, OpenSUSE, Mageia, Ubuntu, KDE, Freedesktop

The Problem AppStream Listaller Conclusion

AppStream Concept

The Problem AppStream Listaller Conclusion

AppStream Concept

The Problem AppStream Listaller Conclusion

AppStream XML

AppStream XML contains meta-data for each application, such as
name,

unique app-id (desktop file), summary, description, icon,
author data, project group, categories, mimetypes, keywords,
screenshot references and descriptions, etc.
It also allows localization of some data

XML!?
Debian FTP-Masters prefer YAML, adding XML to the metadata
set is discouraged. A more general solution is wanted too.

Problem
Where do we get the data from if the distribution does not have it
already in it’s package metadata or it is missing from desktop-files?
Where do we get good screenshots from?

The Problem AppStream Listaller Conclusion

AppStream XML

AppStream XML contains meta-data for each application, such as
name, unique app-id (desktop file),

summary, description, icon,
author data, project group, categories, mimetypes, keywords,
screenshot references and descriptions, etc.
It also allows localization of some data

XML!?
Debian FTP-Masters prefer YAML, adding XML to the metadata
set is discouraged. A more general solution is wanted too.

Problem
Where do we get the data from if the distribution does not have it
already in it’s package metadata or it is missing from desktop-files?
Where do we get good screenshots from?

The Problem AppStream Listaller Conclusion

AppStream XML

AppStream XML contains meta-data for each application, such as
name, unique app-id (desktop file), summary,

description, icon,
author data, project group, categories, mimetypes, keywords,
screenshot references and descriptions, etc.
It also allows localization of some data

XML!?
Debian FTP-Masters prefer YAML, adding XML to the metadata
set is discouraged. A more general solution is wanted too.

Problem
Where do we get the data from if the distribution does not have it
already in it’s package metadata or it is missing from desktop-files?
Where do we get good screenshots from?

The Problem AppStream Listaller Conclusion

AppStream XML

AppStream XML contains meta-data for each application, such as
name, unique app-id (desktop file), summary, description,

icon,
author data, project group, categories, mimetypes, keywords,
screenshot references and descriptions, etc.
It also allows localization of some data

XML!?
Debian FTP-Masters prefer YAML, adding XML to the metadata
set is discouraged. A more general solution is wanted too.

Problem
Where do we get the data from if the distribution does not have it
already in it’s package metadata or it is missing from desktop-files?
Where do we get good screenshots from?

The Problem AppStream Listaller Conclusion

AppStream XML

AppStream XML contains meta-data for each application, such as
name, unique app-id (desktop file), summary, description, icon,

author data, project group, categories, mimetypes, keywords,
screenshot references and descriptions, etc.
It also allows localization of some data

XML!?
Debian FTP-Masters prefer YAML, adding XML to the metadata
set is discouraged. A more general solution is wanted too.

Problem
Where do we get the data from if the distribution does not have it
already in it’s package metadata or it is missing from desktop-files?
Where do we get good screenshots from?

The Problem AppStream Listaller Conclusion

AppStream XML

AppStream XML contains meta-data for each application, such as
name, unique app-id (desktop file), summary, description, icon,
author data,

project group, categories, mimetypes, keywords,
screenshot references and descriptions, etc.
It also allows localization of some data

XML!?
Debian FTP-Masters prefer YAML, adding XML to the metadata
set is discouraged. A more general solution is wanted too.

Problem
Where do we get the data from if the distribution does not have it
already in it’s package metadata or it is missing from desktop-files?
Where do we get good screenshots from?

The Problem AppStream Listaller Conclusion

AppStream XML

AppStream XML contains meta-data for each application, such as
name, unique app-id (desktop file), summary, description, icon,
author data, project group,

categories, mimetypes, keywords,
screenshot references and descriptions, etc.
It also allows localization of some data

XML!?
Debian FTP-Masters prefer YAML, adding XML to the metadata
set is discouraged. A more general solution is wanted too.

Problem
Where do we get the data from if the distribution does not have it
already in it’s package metadata or it is missing from desktop-files?
Where do we get good screenshots from?

The Problem AppStream Listaller Conclusion

AppStream XML

AppStream XML contains meta-data for each application, such as
name, unique app-id (desktop file), summary, description, icon,
author data, project group, categories,

mimetypes, keywords,
screenshot references and descriptions, etc.
It also allows localization of some data

XML!?
Debian FTP-Masters prefer YAML, adding XML to the metadata
set is discouraged. A more general solution is wanted too.

Problem
Where do we get the data from if the distribution does not have it
already in it’s package metadata or it is missing from desktop-files?
Where do we get good screenshots from?

The Problem AppStream Listaller Conclusion

AppStream XML

AppStream XML contains meta-data for each application, such as
name, unique app-id (desktop file), summary, description, icon,
author data, project group, categories, mimetypes,

keywords,
screenshot references and descriptions, etc.
It also allows localization of some data

XML!?
Debian FTP-Masters prefer YAML, adding XML to the metadata
set is discouraged. A more general solution is wanted too.

Problem
Where do we get the data from if the distribution does not have it
already in it’s package metadata or it is missing from desktop-files?
Where do we get good screenshots from?

The Problem AppStream Listaller Conclusion

AppStream XML

AppStream XML contains meta-data for each application, such as
name, unique app-id (desktop file), summary, description, icon,
author data, project group, categories, mimetypes, keywords,

screenshot references and descriptions, etc.
It also allows localization of some data

XML!?
Debian FTP-Masters prefer YAML, adding XML to the metadata
set is discouraged. A more general solution is wanted too.

Problem
Where do we get the data from if the distribution does not have it
already in it’s package metadata or it is missing from desktop-files?
Where do we get good screenshots from?

The Problem AppStream Listaller Conclusion

AppStream XML

AppStream XML contains meta-data for each application, such as
name, unique app-id (desktop file), summary, description, icon,
author data, project group, categories, mimetypes, keywords,
screenshot references and descriptions,

etc.
It also allows localization of some data

XML!?
Debian FTP-Masters prefer YAML, adding XML to the metadata
set is discouraged. A more general solution is wanted too.

Problem
Where do we get the data from if the distribution does not have it
already in it’s package metadata or it is missing from desktop-files?
Where do we get good screenshots from?

The Problem AppStream Listaller Conclusion

AppStream XML

AppStream XML contains meta-data for each application, such as
name, unique app-id (desktop file), summary, description, icon,
author data, project group, categories, mimetypes, keywords,
screenshot references and descriptions, etc.

It also allows localization of some data

XML!?
Debian FTP-Masters prefer YAML, adding XML to the metadata
set is discouraged. A more general solution is wanted too.

Problem
Where do we get the data from if the distribution does not have it
already in it’s package metadata or it is missing from desktop-files?
Where do we get good screenshots from?

The Problem AppStream Listaller Conclusion

AppStream XML

AppStream XML contains meta-data for each application, such as
name, unique app-id (desktop file), summary, description, icon,
author data, project group, categories, mimetypes, keywords,
screenshot references and descriptions, etc.
It also allows localization of some data
XML!?
Debian FTP-Masters prefer YAML, adding XML to the metadata
set is discouraged. A more general solution is wanted too.

Problem
Where do we get the data from if the distribution does not have it
already in it’s package metadata or it is missing from desktop-files?
Where do we get good screenshots from?

The Problem AppStream Listaller Conclusion

AppStream XML

AppStream XML contains meta-data for each application, such as
name, unique app-id (desktop file), summary, description, icon,
author data, project group, categories, mimetypes, keywords,
screenshot references and descriptions, etc.
It also allows localization of some data
XML!?
Debian FTP-Masters prefer YAML, adding XML to the metadata
set is discouraged. A more general solution is wanted too.

Problem
Where do we get the data from if the distribution does not have it
already in it’s package metadata or it is missing from desktop-files?
Where do we get good screenshots from?

The Problem AppStream Listaller Conclusion

AppStream XML

AppStream XML contains meta-data for each application, such as
name, unique app-id (desktop file), summary, description, icon,
author data, project group, categories, mimetypes, keywords,
screenshot references and descriptions, etc.
It also allows localization of some data
XML!?
Debian FTP-Masters prefer YAML, adding XML to the metadata
set is discouraged. A more general solution is wanted too.

Problem
Where do we get the data from if the distribution does not have it
already in it’s package metadata or it is missing from desktop-files?
Where do we get good screenshots from?

The Problem AppStream Listaller Conclusion

AppData

Small XML file shipped with upstream project
Subset of the AppStream XML specification
Contains screenshot URLs to 3rd-party servers
Is localized upstream
No requirement to implement AppStream! It is just
additional metadata to extend or improve existing data
We would like to have upstreams ship the file to improve the
quality of data which is used to present apps in a software
center
External content (like screenshots) is cached and verified on
the distribution’s server

The Problem AppStream Listaller Conclusion

AppData

Small XML file shipped with upstream project
Subset of the AppStream XML specification
Contains screenshot URLs to 3rd-party servers
Is localized upstream
No requirement to implement AppStream! It is just
additional metadata to extend or improve existing data
We would like to have upstreams ship the file to improve the
quality of data which is used to present apps in a software
center
External content (like screenshots) is cached and verified on
the distribution’s server

The Problem AppStream Listaller Conclusion

AppData

Small XML file shipped with upstream project
Subset of the AppStream XML specification
Contains screenshot URLs to 3rd-party servers
Is localized upstream
No requirement to implement AppStream! It is just
additional metadata to extend or improve existing data
We would like to have upstreams ship the file to improve the
quality of data which is used to present apps in a software
center
External content (like screenshots) is cached and verified on
the distribution’s server

The Problem AppStream Listaller Conclusion

AppData

Small XML file shipped with upstream project
Subset of the AppStream XML specification
Contains screenshot URLs to 3rd-party servers
Is localized upstream
No requirement to implement AppStream! It is just
additional metadata to extend or improve existing data
We would like to have upstreams ship the file to improve the
quality of data which is used to present apps in a software
center
External content (like screenshots) is cached and verified on
the distribution’s server

The Problem AppStream Listaller Conclusion

AppData

Small XML file shipped with upstream project
Subset of the AppStream XML specification
Contains screenshot URLs to 3rd-party servers
Is localized upstream
No requirement to implement AppStream! It is just
additional metadata to extend or improve existing data
We would like to have upstreams ship the file to improve the
quality of data which is used to present apps in a software
center
External content (like screenshots) is cached and verified on
the distribution’s server

The Problem AppStream Listaller Conclusion

AppData

Small XML file shipped with upstream project
Subset of the AppStream XML specification
Contains screenshot URLs to 3rd-party servers
Is localized upstream
No requirement to implement AppStream! It is just
additional metadata to extend or improve existing data
We would like to have upstreams ship the file to improve the
quality of data which is used to present apps in a software
center
External content (like screenshots) is cached and verified on
the distribution’s server

The Problem AppStream Listaller Conclusion

AppData

Small XML file shipped with upstream project
Subset of the AppStream XML specification
Contains screenshot URLs to 3rd-party servers
Is localized upstream
No requirement to implement AppStream! It is just
additional metadata to extend or improve existing data
We would like to have upstreams ship the file to improve the
quality of data which is used to present apps in a software
center
External content (like screenshots) is cached and verified on
the distribution’s server

The Problem AppStream Listaller Conclusion

Some metadata statistics

Fedora ships AppStream since v20

Applications in Fedora with:

Long descriptions: 170 (9%)
Keywords: 95 (5%)
Categories: 1744 (98%)
Screenshots: 143 (8%)

GNOME applications with AppData: 60 (50%)
KDE applications with AppData: 1 (1%)
XFCE applications with AppData: 0 (0%)

http://alt.fedoraproject.org/pub/alt/screenshots/f20/status.html

The Problem AppStream Listaller Conclusion

Some metadata statistics

Fedora ships AppStream since v20

Applications in Fedora with:

Long descriptions: 170 (9%)
Keywords: 95 (5%)
Categories: 1744 (98%)
Screenshots: 143 (8%)

GNOME applications with AppData: 60 (50%)
KDE applications with AppData: 1 (1%)
XFCE applications with AppData: 0 (0%)

http://alt.fedoraproject.org/pub/alt/screenshots/f20/status.html

The Problem AppStream Listaller Conclusion

Some metadata statistics

Fedora ships AppStream since v20

Applications in Fedora with:

Long descriptions: 170 (9%)
Keywords: 95 (5%)
Categories: 1744 (98%)
Screenshots: 143 (8%)

GNOME applications with AppData: 60 (50%)
KDE applications with AppData: 1 (1%)
XFCE applications with AppData: 0 (0%)

http://alt.fedoraproject.org/pub/alt/screenshots/f20/status.html

The Problem AppStream Listaller Conclusion

Some metadata statistics

Fedora ships AppStream since v20

Applications in Fedora with:

Long descriptions: 170 (9%)
Keywords: 95 (5%)
Categories: 1744 (98%)
Screenshots: 143 (8%)

GNOME applications with AppData: 60 (50%)
KDE applications with AppData: 1 (1%)
XFCE applications with AppData: 0 (0%)

http://alt.fedoraproject.org/pub/alt/screenshots/f20/status.html

The Problem AppStream Listaller Conclusion

Some metadata statistics

Fedora ships AppStream since v20

Applications in Fedora with:

Long descriptions: 170 (9%)
Keywords: 95 (5%)
Categories: 1744 (98%)
Screenshots: 143 (8%)

GNOME applications with AppData: 60 (50%)
KDE applications with AppData: 1 (1%)
XFCE applications with AppData: 0 (0%)

http://alt.fedoraproject.org/pub/alt/screenshots/f20/status.html

The Problem AppStream Listaller Conclusion

Some metadata statistics

Fedora ships AppStream since v20

Applications in Fedora with:

Long descriptions: 170 (9%)
Keywords: 95 (5%)
Categories: 1744 (98%)
Screenshots: 143 (8%)

GNOME applications with AppData: 60 (50%)
KDE applications with AppData: 1 (1%)
XFCE applications with AppData: 0 (0%)

http://alt.fedoraproject.org/pub/alt/screenshots/f20/status.html

The Problem AppStream Listaller Conclusion

Some metadata statistics

Fedora ships AppStream since v20

Applications in Fedora with:

Long descriptions: 170 (9%)
Keywords: 95 (5%)
Categories: 1744 (98%)
Screenshots: 143 (8%)

GNOME applications with AppData: 60 (50%)
KDE applications with AppData: 1 (1%)
XFCE applications with AppData: 0 (0%)

http://alt.fedoraproject.org/pub/alt/screenshots/f20/status.html

The Problem AppStream Listaller Conclusion

One database to rule them all

In order to make use of AppStream, you have to combine
many data sources (and consider fallback solutions)
Debian will provide AppStream data in YAML (describing not
only applications, but providing extra archive metadata),
Ubuntu uses an own desktop-file extension, others use XML

The AppStream software and libappstream were created to
avoid to require every software center to provide parsers to all
formats
A Xapian database is generated, containing all data for
software centers to access
libappstream allows acessing the database and various other
data sources using a GObject-based API (you don’t have to
work with Xapian’s C++ interface)

The Problem AppStream Listaller Conclusion

One database to rule them all

In order to make use of AppStream, you have to combine
many data sources (and consider fallback solutions)
Debian will provide AppStream data in YAML (describing not
only applications, but providing extra archive metadata),
Ubuntu uses an own desktop-file extension, others use XML

The AppStream software and libappstream were created to
avoid to require every software center to provide parsers to all
formats
A Xapian database is generated, containing all data for
software centers to access
libappstream allows acessing the database and various other
data sources using a GObject-based API (you don’t have to
work with Xapian’s C++ interface)

The Problem AppStream Listaller Conclusion

One database to rule them all

In order to make use of AppStream, you have to combine
many data sources (and consider fallback solutions)
Debian will provide AppStream data in YAML (describing not
only applications, but providing extra archive metadata),
Ubuntu uses an own desktop-file extension, others use XML

The AppStream software and libappstream were created to
avoid to require every software center to provide parsers to all
formats
A Xapian database is generated, containing all data for
software centers to access
libappstream allows acessing the database and various other
data sources using a GObject-based API (you don’t have to
work with Xapian’s C++ interface)

The Problem AppStream Listaller Conclusion

One database to rule them all

In order to make use of AppStream, you have to combine
many data sources (and consider fallback solutions)
Debian will provide AppStream data in YAML (describing not
only applications, but providing extra archive metadata),
Ubuntu uses an own desktop-file extension, others use XML

The AppStream software and libappstream were created to
avoid to require every software center to provide parsers to all
formats
A Xapian database is generated, containing all data for
software centers to access
libappstream allows acessing the database and various other
data sources using a GObject-based API (you don’t have to
work with Xapian’s C++ interface)

The Problem AppStream Listaller Conclusion

One database to rule them all

In order to make use of AppStream, you have to combine
many data sources (and consider fallback solutions)
Debian will provide AppStream data in YAML (describing not
only applications, but providing extra archive metadata),
Ubuntu uses an own desktop-file extension, others use XML

The AppStream software and libappstream were created to
avoid to require every software center to provide parsers to all
formats
A Xapian database is generated, containing all data for
software centers to access
libappstream allows acessing the database and various other
data sources using a GObject-based API (you don’t have to
work with Xapian’s C++ interface)

The Problem AppStream Listaller Conclusion

One database to rule them all

The Problem AppStream Listaller Conclusion

GNOME? - AppStream status in desktops and distros

GNOME-Software: Implementation of an
AppStream-compatible software-center by the GNOME
project
Fully supported on Fedora, pending on other distributions,
blocked on Debian by DEP-11 implementation

The Problem AppStream Listaller Conclusion

GNOME? - AppStream status in desktops and distros

GNOME-Software: Implementation of an
AppStream-compatible software-center by the GNOME
project
Fully supported on Fedora, pending on other distributions,
blocked on Debian by DEP-11 implementation

The Problem AppStream Listaller Conclusion

KDE? - AppStream status in desktops and distros

Apper: Initial support for AppStream via libappstream, needs
work
AppData inclusion into KDE projects is currently discussed
Possible port of Muon Discover to PackageKit and AppStream

The Problem AppStream Listaller Conclusion

KDE? - AppStream status in desktops and distros

Apper: Initial support for AppStream via libappstream, needs
work
AppData inclusion into KDE projects is currently discussed
Possible port of Muon Discover to PackageKit and AppStream

The Problem AppStream Listaller Conclusion

KDE? - AppStream status in desktops and distros

Apper: Initial support for AppStream via libappstream, needs
work
AppData inclusion into KDE projects is currently discussed
Possible port of Muon Discover to PackageKit and AppStream

The Problem AppStream Listaller Conclusion

AppStream status in desktops and distros

Debian: Work on the universal component-metadata file
(defined as DEP-11) has started
Ubuntu: Ships AppInstall, which can be consumed by
libappstream, but will likely migrate to Debian’s solution
Fedora: Ships AppStream XML and GNOME-Software,
already supports screenshots
OpenSUSE: Works on AppStream XML, work finished?
So far, only GNOME has a software-center which fully
supports almost everything from the AppStream specification

The Problem AppStream Listaller Conclusion

AppStream status in desktops and distros

Debian: Work on the universal component-metadata file
(defined as DEP-11) has started
Ubuntu: Ships AppInstall, which can be consumed by
libappstream, but will likely migrate to Debian’s solution
Fedora: Ships AppStream XML and GNOME-Software,
already supports screenshots
OpenSUSE: Works on AppStream XML, work finished?
So far, only GNOME has a software-center which fully
supports almost everything from the AppStream specification

The Problem AppStream Listaller Conclusion

AppStream status in desktops and distros

Debian: Work on the universal component-metadata file
(defined as DEP-11) has started
Ubuntu: Ships AppInstall, which can be consumed by
libappstream, but will likely migrate to Debian’s solution
Fedora: Ships AppStream XML and GNOME-Software,
already supports screenshots
OpenSUSE: Works on AppStream XML, work finished?
So far, only GNOME has a software-center which fully
supports almost everything from the AppStream specification

The Problem AppStream Listaller Conclusion

AppStream status in desktops and distros

Debian: Work on the universal component-metadata file
(defined as DEP-11) has started
Ubuntu: Ships AppInstall, which can be consumed by
libappstream, but will likely migrate to Debian’s solution
Fedora: Ships AppStream XML and GNOME-Software,
already supports screenshots
OpenSUSE: Works on AppStream XML, work finished?
So far, only GNOME has a software-center which fully
supports almost everything from the AppStream specification

The Problem AppStream Listaller Conclusion

AppStream status in desktops and distros

Debian: Work on the universal component-metadata file
(defined as DEP-11) has started
Ubuntu: Ships AppInstall, which can be consumed by
libappstream, but will likely migrate to Debian’s solution
Fedora: Ships AppStream XML and GNOME-Software,
already supports screenshots
OpenSUSE: Works on AppStream XML, work finished?
So far, only GNOME has a software-center which fully
supports almost everything from the AppStream specification

The Problem AppStream Listaller Conclusion

Listaller?

Listaller is a complete solution for packaging and distributing
3rd-party applications. It provides tools for building cross-distro
applications, creating and signing packages, update management
and related features. It is completely invisible to the user on any
system using PackageKit.

Started in 2008 as an experiment
Covered features of PackageKit and AppStream
Switched to PackageKit in 2009

Merged with Autopackage and some other projects in 2010
AppStream was started in 2011, in turn Listaller was rewritten
from scratch, dropping duplicate functionality
Rewrite finished in 2012, many new concepts were
implemented in 2013

The Problem AppStream Listaller Conclusion

Listaller?

Listaller is a complete solution for packaging and distributing
3rd-party applications. It provides tools for building cross-distro
applications, creating and signing packages, update management
and related features. It is completely invisible to the user on any
system using PackageKit.

Started in 2008 as an experiment
Covered features of PackageKit and AppStream
Switched to PackageKit in 2009

Merged with Autopackage and some other projects in 2010
AppStream was started in 2011, in turn Listaller was rewritten
from scratch, dropping duplicate functionality
Rewrite finished in 2012, many new concepts were
implemented in 2013

The Problem AppStream Listaller Conclusion

Listaller?

Listaller is a complete solution for packaging and distributing
3rd-party applications. It provides tools for building cross-distro
applications, creating and signing packages, update management
and related features. It is completely invisible to the user on any
system using PackageKit.

Started in 2008 as an experiment
Covered features of PackageKit and AppStream
Switched to PackageKit in 2009

Merged with Autopackage and some other projects in 2010
AppStream was started in 2011, in turn Listaller was rewritten
from scratch, dropping duplicate functionality
Rewrite finished in 2012, many new concepts were
implemented in 2013

The Problem AppStream Listaller Conclusion

Listaller?

Listaller is a complete solution for packaging and distributing
3rd-party applications. It provides tools for building cross-distro
applications, creating and signing packages, update management
and related features. It is completely invisible to the user on any
system using PackageKit.

Started in 2008 as an experiment
Covered features of PackageKit and AppStream
Switched to PackageKit in 2009

Merged with Autopackage and some other projects in 2010
AppStream was started in 2011, in turn Listaller was rewritten
from scratch, dropping duplicate functionality
Rewrite finished in 2012, many new concepts were
implemented in 2013

The Problem AppStream Listaller Conclusion

Listaller?

Listaller is a complete solution for packaging and distributing
3rd-party applications. It provides tools for building cross-distro
applications, creating and signing packages, update management
and related features. It is completely invisible to the user on any
system using PackageKit.

Started in 2008 as an experiment
Covered features of PackageKit and AppStream
Switched to PackageKit in 2009

Merged with Autopackage and some other projects in 2010
AppStream was started in 2011, in turn Listaller was rewritten
from scratch, dropping duplicate functionality
Rewrite finished in 2012, many new concepts were
implemented in 2013

The Problem AppStream Listaller Conclusion

Listaller?

Listaller is a complete solution for packaging and distributing
3rd-party applications. It provides tools for building cross-distro
applications, creating and signing packages, update management
and related features. It is completely invisible to the user on any
system using PackageKit.

Started in 2008 as an experiment
Covered features of PackageKit and AppStream
Switched to PackageKit in 2009

Merged with Autopackage and some other projects in 2010
AppStream was started in 2011, in turn Listaller was rewritten
from scratch, dropping duplicate functionality
Rewrite finished in 2012, many new concepts were
implemented in 2013

The Problem AppStream Listaller Conclusion

Goals

System integration
Users should not notice that Listaller is used when installing apps
Software updates should be retrieved using the same UI as the
system itself
Listaller apps should integrate seamlessly with the system

Cross-distro and -desktop compatibility
Simplification

No catch-all solution, Listaller should cover the most common
use-cases. Native distribution packages should cover the remaining
cases.

Security
Signatures, security hints database, sandboxing, ...

Developer tools
Provide helpers for developers to make their apps run on multiple
distributions
Make packaging as simple as possible, do some QA on the
packaged app

The Problem AppStream Listaller Conclusion

Goals

System integration
Users should not notice that Listaller is used when installing apps
Software updates should be retrieved using the same UI as the
system itself
Listaller apps should integrate seamlessly with the system

Cross-distro and -desktop compatibility
Simplification

No catch-all solution, Listaller should cover the most common
use-cases. Native distribution packages should cover the remaining
cases.

Security
Signatures, security hints database, sandboxing, ...

Developer tools
Provide helpers for developers to make their apps run on multiple
distributions
Make packaging as simple as possible, do some QA on the
packaged app

The Problem AppStream Listaller Conclusion

Goals

System integration
Users should not notice that Listaller is used when installing apps
Software updates should be retrieved using the same UI as the
system itself
Listaller apps should integrate seamlessly with the system

Cross-distro and -desktop compatibility
Simplification

No catch-all solution, Listaller should cover the most common
use-cases. Native distribution packages should cover the remaining
cases.

Security
Signatures, security hints database, sandboxing, ...

Developer tools
Provide helpers for developers to make their apps run on multiple
distributions
Make packaging as simple as possible, do some QA on the
packaged app

The Problem AppStream Listaller Conclusion

Goals

System integration
Users should not notice that Listaller is used when installing apps
Software updates should be retrieved using the same UI as the
system itself
Listaller apps should integrate seamlessly with the system

Cross-distro and -desktop compatibility
Simplification

No catch-all solution, Listaller should cover the most common
use-cases. Native distribution packages should cover the remaining
cases.

Security
Signatures, security hints database, sandboxing, ...

Developer tools
Provide helpers for developers to make their apps run on multiple
distributions
Make packaging as simple as possible, do some QA on the
packaged app

The Problem AppStream Listaller Conclusion

Goals

System integration
Users should not notice that Listaller is used when installing apps
Software updates should be retrieved using the same UI as the
system itself
Listaller apps should integrate seamlessly with the system

Cross-distro and -desktop compatibility
Simplification

No catch-all solution, Listaller should cover the most common
use-cases. Native distribution packages should cover the remaining
cases.

Security
Signatures, security hints database, sandboxing, ...

Developer tools
Provide helpers for developers to make their apps run on multiple
distributions
Make packaging as simple as possible, do some QA on the
packaged app

The Problem AppStream Listaller Conclusion

Goals

System integration
Users should not notice that Listaller is used when installing apps
Software updates should be retrieved using the same UI as the
system itself
Listaller apps should integrate seamlessly with the system

Cross-distro and -desktop compatibility
Simplification

No catch-all solution, Listaller should cover the most common
use-cases. Native distribution packages should cover the remaining
cases.

Security
Signatures, security hints database, sandboxing, ...

Developer tools
Provide helpers for developers to make their apps run on multiple
distributions
Make packaging as simple as possible, do some QA on the
packaged app

The Problem AppStream Listaller Conclusion

Goals

System integration
Users should not notice that Listaller is used when installing apps
Software updates should be retrieved using the same UI as the
system itself
Listaller apps should integrate seamlessly with the system

Cross-distro and -desktop compatibility
Simplification

No catch-all solution, Listaller should cover the most common
use-cases. Native distribution packages should cover the remaining
cases.

Security
Signatures, security hints database, sandboxing, ...

Developer tools
Provide helpers for developers to make their apps run on multiple
distributions
Make packaging as simple as possible, do some QA on the
packaged app

The Problem AppStream Listaller Conclusion

Goals

System integration
Users should not notice that Listaller is used when installing apps
Software updates should be retrieved using the same UI as the
system itself
Listaller apps should integrate seamlessly with the system

Cross-distro and -desktop compatibility
Simplification

No catch-all solution, Listaller should cover the most common
use-cases. Native distribution packages should cover the remaining
cases.

Security
Signatures, security hints database, sandboxing, ...

Developer tools
Provide helpers for developers to make their apps run on multiple
distributions
Make packaging as simple as possible, do some QA on the
packaged app

The Problem AppStream Listaller Conclusion

Goals

System integration
Users should not notice that Listaller is used when installing apps
Software updates should be retrieved using the same UI as the
system itself
Listaller apps should integrate seamlessly with the system

Cross-distro and -desktop compatibility
Simplification

No catch-all solution, Listaller should cover the most common
use-cases. Native distribution packages should cover the remaining
cases.

Security
Signatures, security hints database, sandboxing, ...

Developer tools
Provide helpers for developers to make their apps run on multiple
distributions
Make packaging as simple as possible, do some QA on the
packaged app

The Problem AppStream Listaller Conclusion

Goals

System integration
Users should not notice that Listaller is used when installing apps
Software updates should be retrieved using the same UI as the
system itself
Listaller apps should integrate seamlessly with the system

Cross-distro and -desktop compatibility
Simplification

No catch-all solution, Listaller should cover the most common
use-cases. Native distribution packages should cover the remaining
cases.

Security
Signatures, security hints database, sandboxing, ...

Developer tools
Provide helpers for developers to make their apps run on multiple
distributions
Make packaging as simple as possible, do some QA on the
packaged app

The Problem AppStream Listaller Conclusion

Goals

System integration
Users should not notice that Listaller is used when installing apps
Software updates should be retrieved using the same UI as the
system itself
Listaller apps should integrate seamlessly with the system

Cross-distro and -desktop compatibility
Simplification

No catch-all solution, Listaller should cover the most common
use-cases. Native distribution packages should cover the remaining
cases.

Security
Signatures, security hints database, sandboxing, ...

Developer tools
Provide helpers for developers to make their apps run on multiple
distributions
Make packaging as simple as possible, do some QA on the
packaged app

The Problem AppStream Listaller Conclusion

Goals

System integration
Users should not notice that Listaller is used when installing apps
Software updates should be retrieved using the same UI as the
system itself
Listaller apps should integrate seamlessly with the system

Cross-distro and -desktop compatibility
Simplification

No catch-all solution, Listaller should cover the most common
use-cases. Native distribution packages should cover the remaining
cases.

Security
Signatures, security hints database, sandboxing, ...

Developer tools
Provide helpers for developers to make their apps run on multiple
distributions
Make packaging as simple as possible, do some QA on the
packaged app

The Problem AppStream Listaller Conclusion

Basic concept

Listaller contains a PackageKit plugin, mediating between Listaller
and PackageKit
The plugin acts as »meta-backend«, sending information about
Listaller packages via PackageKit’s DBus interface, and making
queries to the native backend

Every PackageKit client can install, remove and update
Listaller packages

Listaller installs some XML for AppStream-compatible software
centers, so they can display details about a 3rd-party application
Uses a superset of the AppData specification as source for
application metadata

The Problem AppStream Listaller Conclusion

Basic concept

Listaller contains a PackageKit plugin, mediating between Listaller
and PackageKit
The plugin acts as »meta-backend«, sending information about
Listaller packages via PackageKit’s DBus interface, and making
queries to the native backend

Every PackageKit client can install, remove and update
Listaller packages

Listaller installs some XML for AppStream-compatible software
centers, so they can display details about a 3rd-party application
Uses a superset of the AppData specification as source for
application metadata

The Problem AppStream Listaller Conclusion

Basic concept

Listaller contains a PackageKit plugin, mediating between Listaller
and PackageKit
The plugin acts as »meta-backend«, sending information about
Listaller packages via PackageKit’s DBus interface, and making
queries to the native backend

Every PackageKit client can install, remove and update
Listaller packages

Listaller installs some XML for AppStream-compatible software
centers, so they can display details about a 3rd-party application
Uses a superset of the AppData specification as source for
application metadata

The Problem AppStream Listaller Conclusion

Basic concept

Listaller contains a PackageKit plugin, mediating between Listaller
and PackageKit
The plugin acts as »meta-backend«, sending information about
Listaller packages via PackageKit’s DBus interface, and making
queries to the native backend

Every PackageKit client can install, remove and update
Listaller packages

Listaller installs some XML for AppStream-compatible software
centers, so they can display details about a 3rd-party application
Uses a superset of the AppData specification as source for
application metadata

The Problem AppStream Listaller Conclusion

Basic concept

Listaller contains a PackageKit plugin, mediating between Listaller
and PackageKit
The plugin acts as »meta-backend«, sending information about
Listaller packages via PackageKit’s DBus interface, and making
queries to the native backend

Every PackageKit client can install, remove and update
Listaller packages

Listaller installs some XML for AppStream-compatible software
centers, so they can display details about a 3rd-party application
Uses a superset of the AppData specification as source for
application metadata

The Problem AppStream Listaller Conclusion

Listaller Tools

The Problem AppStream Listaller Conclusion

Utopia package creation

1 Write AppStream AppData describing the application
2 Write a small pkoptions file, defining few basic options for

the package
3 Write a file/dir listing for the new package
4 Build the package!

Listaller will use appcompile to determine the buildsystem and
build the app, install it to a temporary location and then add it to
the package
The depscan tool is used to determine dependencies and map them
to a component (e.g. libglib2 is part of the GLib2 component)
Package is GPG-signed afterwards
During installation, a few optimizations and adjustments are made
automatically
A Listaller IPK installation does not run any user-defined script
Listaller packages are simple LZMA2-compressed tarballs

The Problem AppStream Listaller Conclusion

Utopia package creation

1 Write AppStream AppData describing the application
2 Write a small pkoptions file, defining few basic options for

the package
3 Write a file/dir listing for the new package
4 Build the package!

Listaller will use appcompile to determine the buildsystem and
build the app, install it to a temporary location and then add it to
the package
The depscan tool is used to determine dependencies and map them
to a component (e.g. libglib2 is part of the GLib2 component)
Package is GPG-signed afterwards
During installation, a few optimizations and adjustments are made
automatically
A Listaller IPK installation does not run any user-defined script
Listaller packages are simple LZMA2-compressed tarballs

The Problem AppStream Listaller Conclusion

Utopia package creation

1 Write AppStream AppData describing the application
2 Write a small pkoptions file, defining few basic options for

the package
3 Write a file/dir listing for the new package
4 Build the package!

Listaller will use appcompile to determine the buildsystem and
build the app, install it to a temporary location and then add it to
the package
The depscan tool is used to determine dependencies and map them
to a component (e.g. libglib2 is part of the GLib2 component)
Package is GPG-signed afterwards
During installation, a few optimizations and adjustments are made
automatically
A Listaller IPK installation does not run any user-defined script
Listaller packages are simple LZMA2-compressed tarballs

The Problem AppStream Listaller Conclusion

Utopia package creation

1 Write AppStream AppData describing the application
2 Write a small pkoptions file, defining few basic options for

the package
3 Write a file/dir listing for the new package
4 Build the package!

Listaller will use appcompile to determine the buildsystem and
build the app, install it to a temporary location and then add it to
the package
The depscan tool is used to determine dependencies and map them
to a component (e.g. libglib2 is part of the GLib2 component)
Package is GPG-signed afterwards
During installation, a few optimizations and adjustments are made
automatically
A Listaller IPK installation does not run any user-defined script
Listaller packages are simple LZMA2-compressed tarballs

The Problem AppStream Listaller Conclusion

Utopia package creation

1 Write AppStream AppData describing the application
2 Write a small pkoptions file, defining few basic options for

the package
3 Write a file/dir listing for the new package
4 Build the package!

Listaller will use appcompile to determine the buildsystem and
build the app, install it to a temporary location and then add it to
the package
The depscan tool is used to determine dependencies and map them
to a component (e.g. libglib2 is part of the GLib2 component)
Package is GPG-signed afterwards
During installation, a few optimizations and adjustments are made
automatically
A Listaller IPK installation does not run any user-defined script
Listaller packages are simple LZMA2-compressed tarballs

The Problem AppStream Listaller Conclusion

Utopia package creation

1 Write AppStream AppData describing the application
2 Write a small pkoptions file, defining few basic options for

the package
3 Write a file/dir listing for the new package
4 Build the package!

Listaller will use appcompile to determine the buildsystem and
build the app, install it to a temporary location and then add it to
the package
The depscan tool is used to determine dependencies and map them
to a component (e.g. libglib2 is part of the GLib2 component)
Package is GPG-signed afterwards
During installation, a few optimizations and adjustments are made
automatically
A Listaller IPK installation does not run any user-defined script
Listaller packages are simple LZMA2-compressed tarballs

The Problem AppStream Listaller Conclusion

Utopia package creation

1 Write AppStream AppData describing the application
2 Write a small pkoptions file, defining few basic options for

the package
3 Write a file/dir listing for the new package
4 Build the package!

Listaller will use appcompile to determine the buildsystem and
build the app, install it to a temporary location and then add it to
the package
The depscan tool is used to determine dependencies and map them
to a component (e.g. libglib2 is part of the GLib2 component)
Package is GPG-signed afterwards
During installation, a few optimizations and adjustments are made
automatically
A Listaller IPK installation does not run any user-defined script
Listaller packages are simple LZMA2-compressed tarballs

The Problem AppStream Listaller Conclusion

Utopia package creation

1 Write AppStream AppData describing the application
2 Write a small pkoptions file, defining few basic options for

the package
3 Write a file/dir listing for the new package
4 Build the package!

Listaller will use appcompile to determine the buildsystem and
build the app, install it to a temporary location and then add it to
the package
The depscan tool is used to determine dependencies and map them
to a component (e.g. libglib2 is part of the GLib2 component)
Package is GPG-signed afterwards
During installation, a few optimizations and adjustments are made
automatically
A Listaller IPK installation does not run any user-defined script
Listaller packages are simple LZMA2-compressed tarballs

The Problem AppStream Listaller Conclusion

Utopia package creation

1 Write AppStream AppData describing the application
2 Write a small pkoptions file, defining few basic options for

the package
3 Write a file/dir listing for the new package
4 Build the package!

Listaller will use appcompile to determine the buildsystem and
build the app, install it to a temporary location and then add it to
the package
The depscan tool is used to determine dependencies and map them
to a component (e.g. libglib2 is part of the GLib2 component)
Package is GPG-signed afterwards
During installation, a few optimizations and adjustments are made
automatically
A Listaller IPK installation does not run any user-defined script
Listaller packages are simple LZMA2-compressed tarballs

The Problem AppStream Listaller Conclusion

Utopia package creation

1 Write AppStream AppData describing the application
2 Write a small pkoptions file, defining few basic options for

the package
3 Write a file/dir listing for the new package
4 Build the package!

Listaller will use appcompile to determine the buildsystem and
build the app, install it to a temporary location and then add it to
the package
The depscan tool is used to determine dependencies and map them
to a component (e.g. libglib2 is part of the GLib2 component)
Package is GPG-signed afterwards
During installation, a few optimizations and adjustments are made
automatically
A Listaller IPK installation does not run any user-defined script
Listaller packages are simple LZMA2-compressed tarballs

The Problem AppStream Listaller Conclusion

Utopia package creation

1 Write AppStream AppData describing the application
2 Write a small pkoptions file, defining few basic options for

the package
3 Write a file/dir listing for the new package
4 Build the package!

Listaller will use appcompile to determine the buildsystem and
build the app, install it to a temporary location and then add it to
the package
The depscan tool is used to determine dependencies and map them
to a component (e.g. libglib2 is part of the GLib2 component)
Package is GPG-signed afterwards
During installation, a few optimizations and adjustments are made
automatically
A Listaller IPK installation does not run any user-defined script
Listaller packages are simple LZMA2-compressed tarballs

The Problem AppStream Listaller Conclusion

Dependency solving?

The Problem AppStream Listaller Conclusion

Dependency solving...

Problem #1
Satisfying dependencies is a complex task, searching for the right
dependency is difficult and takes time. We want to avoid complex
dependency-solving.

Problem #2
What if the distributor does not provide enough metadata to find a
dependency?

Problem #3
What if the ABI of a dependency is not stable? What if we
absolutely require an old library version?

The Problem AppStream Listaller Conclusion

Dependency solving...

Problem #1
Satisfying dependencies is a complex task, searching for the right
dependency is difficult and takes time. We want to avoid complex
dependency-solving.

Problem #2
What if the distributor does not provide enough metadata to find a
dependency?

Problem #3
What if the ABI of a dependency is not stable? What if we
absolutely require an old library version?

The Problem AppStream Listaller Conclusion

Dependency solving...

Problem #1
Satisfying dependencies is a complex task, searching for the right
dependency is difficult and takes time. We want to avoid complex
dependency-solving.

Problem #2
What if the distributor does not provide enough metadata to find a
dependency?

Problem #3
What if the ABI of a dependency is not stable? What if we
absolutely require an old library version?

The Problem AppStream Listaller Conclusion

Components to the rescue!

Most 3rd-party applications don’t need complex
dependency-solving, they are built against a certain
development platform

Apps might require GTK+3 (>= 3.12), or Qt5 (>= 5.2) or
PulseAudio (>= 2.4)

A component is e.g. a toolkit, a basic building block the
systems consists of. Public interfaces a component provides
are described in a component-definition file.
Listaller only needs to ensure that basic components are
present for the application to run. Minor dependencies can be
shipped with the application package
Upstream should write component-definition files and ship
them with their source
Some dependencies can be satisfied by downloading a
statically linked version provided by upstream or the
distributor, or querying cpan/cran/pypi/gems/...

The Problem AppStream Listaller Conclusion

Components to the rescue!

Most 3rd-party applications don’t need complex
dependency-solving, they are built against a certain
development platform

Apps might require GTK+3 (>= 3.12), or Qt5 (>= 5.2) or
PulseAudio (>= 2.4)

A component is e.g. a toolkit, a basic building block the
systems consists of. Public interfaces a component provides
are described in a component-definition file.
Listaller only needs to ensure that basic components are
present for the application to run. Minor dependencies can be
shipped with the application package
Upstream should write component-definition files and ship
them with their source
Some dependencies can be satisfied by downloading a
statically linked version provided by upstream or the
distributor, or querying cpan/cran/pypi/gems/...

The Problem AppStream Listaller Conclusion

Components to the rescue!

Most 3rd-party applications don’t need complex
dependency-solving, they are built against a certain
development platform

Apps might require GTK+3 (>= 3.12), or Qt5 (>= 5.2) or
PulseAudio (>= 2.4)

A component is e.g. a toolkit, a basic building block the
systems consists of. Public interfaces a component provides
are described in a component-definition file.
Listaller only needs to ensure that basic components are
present for the application to run. Minor dependencies can be
shipped with the application package
Upstream should write component-definition files and ship
them with their source
Some dependencies can be satisfied by downloading a
statically linked version provided by upstream or the
distributor, or querying cpan/cran/pypi/gems/...

The Problem AppStream Listaller Conclusion

Components to the rescue!

Most 3rd-party applications don’t need complex
dependency-solving, they are built against a certain
development platform

Apps might require GTK+3 (>= 3.12), or Qt5 (>= 5.2) or
PulseAudio (>= 2.4)

A component is e.g. a toolkit, a basic building block the
systems consists of. Public interfaces a component provides
are described in a component-definition file.
Listaller only needs to ensure that basic components are
present for the application to run. Minor dependencies can be
shipped with the application package
Upstream should write component-definition files and ship
them with their source
Some dependencies can be satisfied by downloading a
statically linked version provided by upstream or the
distributor, or querying cpan/cran/pypi/gems/...

The Problem AppStream Listaller Conclusion

Components to the rescue!

Most 3rd-party applications don’t need complex
dependency-solving, they are built against a certain
development platform

Apps might require GTK+3 (>= 3.12), or Qt5 (>= 5.2) or
PulseAudio (>= 2.4)

A component is e.g. a toolkit, a basic building block the
systems consists of. Public interfaces a component provides
are described in a component-definition file.
Listaller only needs to ensure that basic components are
present for the application to run. Minor dependencies can be
shipped with the application package
Upstream should write component-definition files and ship
them with their source
Some dependencies can be satisfied by downloading a
statically linked version provided by upstream or the
distributor, or querying cpan/cran/pypi/gems/...

The Problem AppStream Listaller Conclusion

Components to the rescue!

Most 3rd-party applications don’t need complex
dependency-solving, they are built against a certain
development platform

Apps might require GTK+3 (>= 3.12), or Qt5 (>= 5.2) or
PulseAudio (>= 2.4)

A component is e.g. a toolkit, a basic building block the
systems consists of. Public interfaces a component provides
are described in a component-definition file.
Listaller only needs to ensure that basic components are
present for the application to run. Minor dependencies can be
shipped with the application package
Upstream should write component-definition files and ship
them with their source
Some dependencies can be satisfied by downloading a
statically linked version provided by upstream or the
distributor, or querying cpan/cran/pypi/gems/...

The Problem AppStream Listaller Conclusion

Component Information

Think of it as an »non-developer pkg-config file«
Describes the component version and all public interfaces this
component provides
Can map software dependencies to a component at
package-build-time and a component to a native-package at
install time

GLib C utility library
ID: GLib2
Name: GLib 2.0
Version : 2.36
VersionDynamic : shell$ glib -fake --version
Libraries : libgio -2.0. so .0

libgobject -2.0. so .0
libglib -2.0. so .0

Binaries :
gdbus
gio - querymodules
glib - compile - resources
glib - compile - schemas
gresource
gsettings

The Problem AppStream Listaller Conclusion

Component Information

Think of it as an »non-developer pkg-config file«
Describes the component version and all public interfaces this
component provides
Can map software dependencies to a component at
package-build-time and a component to a native-package at
install time

GLib C utility library
ID: GLib2
Name: GLib 2.0
Version : 2.36
VersionDynamic : shell$ glib -fake --version
Libraries : libgio -2.0. so .0

libgobject -2.0. so .0
libglib -2.0. so .0

Binaries :
gdbus
gio - querymodules
glib - compile - resources
glib - compile - schemas
gresource
gsettings

The Problem AppStream Listaller Conclusion

Component Information

Think of it as an »non-developer pkg-config file«
Describes the component version and all public interfaces this
component provides
Can map software dependencies to a component at
package-build-time and a component to a native-package at
install time

GLib C utility library
ID: GLib2
Name: GLib 2.0
Version : 2.36
VersionDynamic : shell$ glib -fake --version
Libraries : libgio -2.0. so .0

libgobject -2.0. so .0
libglib -2.0. so .0

Binaries :
gdbus
gio - querymodules
glib - compile - resources
glib - compile - schemas
gresource
gsettings

The Problem AppStream Listaller Conclusion

Component Information

Component definitions are shipped with every Listaller (IPK)
package, they are available on every distribution

Data provided by the distributor overrides data shipped with
the package

Component info can contain commands to extract a version
number to determine the current component version on a new
distribution
In future, component data might refer to a statically linked
copy of the component, to satisfy dependencies of old software
The Listaller helper tool depscan is able to automatically
scan the software binaries and match them to components

The Problem AppStream Listaller Conclusion

Component Information

Component definitions are shipped with every Listaller (IPK)
package, they are available on every distribution

Data provided by the distributor overrides data shipped with
the package

Component info can contain commands to extract a version
number to determine the current component version on a new
distribution
In future, component data might refer to a statically linked
copy of the component, to satisfy dependencies of old software
The Listaller helper tool depscan is able to automatically
scan the software binaries and match them to components

The Problem AppStream Listaller Conclusion

Component Information

Component definitions are shipped with every Listaller (IPK)
package, they are available on every distribution

Data provided by the distributor overrides data shipped with
the package

Component info can contain commands to extract a version
number to determine the current component version on a new
distribution
In future, component data might refer to a statically linked
copy of the component, to satisfy dependencies of old software
The Listaller helper tool depscan is able to automatically
scan the software binaries and match them to components

The Problem AppStream Listaller Conclusion

Component Information

Component definitions are shipped with every Listaller (IPK)
package, they are available on every distribution

Data provided by the distributor overrides data shipped with
the package

Component info can contain commands to extract a version
number to determine the current component version on a new
distribution
In future, component data might refer to a statically linked
copy of the component, to satisfy dependencies of old software
The Listaller helper tool depscan is able to automatically
scan the software binaries and match them to components

The Problem AppStream Listaller Conclusion

Component Information

Component definitions are shipped with every Listaller (IPK)
package, they are available on every distribution

Data provided by the distributor overrides data shipped with
the package

Component info can contain commands to extract a version
number to determine the current component version on a new
distribution
In future, component data might refer to a statically linked
copy of the component, to satisfy dependencies of old software
The Listaller helper tool depscan is able to automatically
scan the software binaries and match them to components

The Problem AppStream Listaller Conclusion

Future

Finalize and formalize Listaller specifications
Get upstream projects to ship component-definitions by
default
Get Listaller into more distributions
Maybe in the end have a way for 3rd-party developers to
target all Linux distributions with one app-package?

The Problem AppStream Listaller Conclusion

Future

Finalize and formalize Listaller specifications
Get upstream projects to ship component-definitions by
default
Get Listaller into more distributions
Maybe in the end have a way for 3rd-party developers to
target all Linux distributions with one app-package?

The Problem AppStream Listaller Conclusion

Future

Finalize and formalize Listaller specifications
Get upstream projects to ship component-definitions by
default
Get Listaller into more distributions
Maybe in the end have a way for 3rd-party developers to
target all Linux distributions with one app-package?

The Problem AppStream Listaller Conclusion

Future

Finalize and formalize Listaller specifications
Get upstream projects to ship component-definitions by
default
Get Listaller into more distributions
Maybe in the end have a way for 3rd-party developers to
target all Linux distributions with one app-package?

The Problem AppStream Listaller Conclusion

Conclusion I

We need a solution to make it easy for 3rd-party developers to
distribute their software on all distributions at once. We also
need to increase visibility of existing applications in
distributors repositories
AppStream provides all metadata you want to build a software
center
The libappstream library abstracts all remaining differences,
and is an implementation of AppStream which can be shared
by all clients who want to make use of it’s features
Listaller provides a way to ship applications on all Linux
distributions and keep them up-to-date, reusing existing user
interfaces
The Listaller project is not yet mature and the specifications
are not finalized, but this will happen soon with the 0.6 release

The Problem AppStream Listaller Conclusion

Conclusion I

We need a solution to make it easy for 3rd-party developers to
distribute their software on all distributions at once. We also
need to increase visibility of existing applications in
distributors repositories
AppStream provides all metadata you want to build a software
center
The libappstream library abstracts all remaining differences,
and is an implementation of AppStream which can be shared
by all clients who want to make use of it’s features
Listaller provides a way to ship applications on all Linux
distributions and keep them up-to-date, reusing existing user
interfaces
The Listaller project is not yet mature and the specifications
are not finalized, but this will happen soon with the 0.6 release

The Problem AppStream Listaller Conclusion

Conclusion I

We need a solution to make it easy for 3rd-party developers to
distribute their software on all distributions at once. We also
need to increase visibility of existing applications in
distributors repositories
AppStream provides all metadata you want to build a software
center
The libappstream library abstracts all remaining differences,
and is an implementation of AppStream which can be shared
by all clients who want to make use of it’s features
Listaller provides a way to ship applications on all Linux
distributions and keep them up-to-date, reusing existing user
interfaces
The Listaller project is not yet mature and the specifications
are not finalized, but this will happen soon with the 0.6 release

The Problem AppStream Listaller Conclusion

Conclusion I

We need a solution to make it easy for 3rd-party developers to
distribute their software on all distributions at once. We also
need to increase visibility of existing applications in
distributors repositories
AppStream provides all metadata you want to build a software
center
The libappstream library abstracts all remaining differences,
and is an implementation of AppStream which can be shared
by all clients who want to make use of it’s features
Listaller provides a way to ship applications on all Linux
distributions and keep them up-to-date, reusing existing user
interfaces
The Listaller project is not yet mature and the specifications
are not finalized, but this will happen soon with the 0.6 release

The Problem AppStream Listaller Conclusion

Conclusion I

We need a solution to make it easy for 3rd-party developers to
distribute their software on all distributions at once. We also
need to increase visibility of existing applications in
distributors repositories
AppStream provides all metadata you want to build a software
center
The libappstream library abstracts all remaining differences,
and is an implementation of AppStream which can be shared
by all clients who want to make use of it’s features
Listaller provides a way to ship applications on all Linux
distributions and keep them up-to-date, reusing existing user
interfaces
The Listaller project is not yet mature and the specifications
are not finalized, but this will happen soon with the 0.6 release

The Problem AppStream Listaller Conclusion

Conclusion I

We welcome contributors to AppStream! Feedback is always
wanted, and we are waiting for software-center
implementations!
Listaller needs developers as well! If you have an idea or want
to improve something, get in contact!

The Problem AppStream Listaller Conclusion

Conclusion I

We welcome contributors to AppStream! Feedback is always
wanted, and we are waiting for software-center
implementations!
Listaller needs developers as well! If you have an idea or want
to improve something, get in contact!

The Problem AppStream Listaller Conclusion

Conclusion II

Writing Freedesktop standards is hard
Never do things leading to the impression that you develop
the standard primarily for GNOME/KDE
Standards are created by implementing something, not by
calling it a standard
Communicate and blog as much as possible while introducing
a new thing, so people know about it and can give feedback
Sometimes it needs someone to just go ahead with a project
and have others follow
Discuss things with a small amount of people first, then open
up to the wider community - ignore people bikeshedding
about details, always ask for a better proposal

The Problem AppStream Listaller Conclusion

Conclusion II

Writing Freedesktop standards is hard
Never do things leading to the impression that you develop
the standard primarily for GNOME/KDE
Standards are created by implementing something, not by
calling it a standard
Communicate and blog as much as possible while introducing
a new thing, so people know about it and can give feedback
Sometimes it needs someone to just go ahead with a project
and have others follow
Discuss things with a small amount of people first, then open
up to the wider community - ignore people bikeshedding
about details, always ask for a better proposal

The Problem AppStream Listaller Conclusion

Conclusion II

Writing Freedesktop standards is hard
Never do things leading to the impression that you develop
the standard primarily for GNOME/KDE
Standards are created by implementing something, not by
calling it a standard
Communicate and blog as much as possible while introducing
a new thing, so people know about it and can give feedback
Sometimes it needs someone to just go ahead with a project
and have others follow
Discuss things with a small amount of people first, then open
up to the wider community - ignore people bikeshedding
about details, always ask for a better proposal

The Problem AppStream Listaller Conclusion

Conclusion II

Writing Freedesktop standards is hard
Never do things leading to the impression that you develop
the standard primarily for GNOME/KDE
Standards are created by implementing something, not by
calling it a standard
Communicate and blog as much as possible while introducing
a new thing, so people know about it and can give feedback
Sometimes it needs someone to just go ahead with a project
and have others follow
Discuss things with a small amount of people first, then open
up to the wider community - ignore people bikeshedding
about details, always ask for a better proposal

The Problem AppStream Listaller Conclusion

Conclusion II

Writing Freedesktop standards is hard
Never do things leading to the impression that you develop
the standard primarily for GNOME/KDE
Standards are created by implementing something, not by
calling it a standard
Communicate and blog as much as possible while introducing
a new thing, so people know about it and can give feedback
Sometimes it needs someone to just go ahead with a project
and have others follow
Discuss things with a small amount of people first, then open
up to the wider community - ignore people bikeshedding
about details, always ask for a better proposal

The Problem AppStream Listaller Conclusion

Conclusion II

Writing Freedesktop standards is hard
Never do things leading to the impression that you develop
the standard primarily for GNOME/KDE
Standards are created by implementing something, not by
calling it a standard
Communicate and blog as much as possible while introducing
a new thing, so people know about it and can give feedback
Sometimes it needs someone to just go ahead with a project
and have others follow
Discuss things with a small amount of people first, then open
up to the wider community - ignore people bikeshedding
about details, always ask for a better proposal

The Problem AppStream Listaller Conclusion

Thank you for your attention!

(Further) Questions?

The Problem AppStream Listaller Conclusion

Useful links

PackageKit: http://www.packagekit.org/

Listaller: http://listaller.tenstral.net/

AppStream Documentation:
http://www.freedesktop.org/software/appstream/docs/

AppData Information & Validation:
http://people.freedesktop.org/~hughsient/appdata/

	The Problem
	AppStream
	Listaller
	Conclusion

