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Color quantizationis a process of choosing a set of K representative colors to approximate the N
colors of an image, K < N, such that the resulting K-color image looks as much like the original
N-color image as possible. This is an optimization problem known to be NP-complete in K.
However, this paper shows that by ordering the N colors along their principal axis and
partitioning the color space with respect to this ordering, the resulting constrained optimization
problem can be solved in O(N + KM 2) time by dynamic programming (where M is the intensity
resolution of the device).

Traditional color quantization algorithms recursively bipartition the color space. By using the
above dynamic-programming algorithm, we can construct a globally optimal K-partition, K > 2,
of a color space in the principal direction of the input data. This new partitioning strategy leads
to smaller quantization error and hence better image quality. Other algorithmic issues in color
quantization such as efficient statistical computations and nearest-neighbor searching are also
studied. The interplay between luminance and chromaticity in color quantization with and
without color dithering is investigated. Our color quantization method allows the user t.a choose
a balance between the image smoothness and hue accuracy for a given K.

Categoriesand Subject Descriptors:1.3.3 [Computer Graphics]: Picture/Image Generation;
1.4.1 [Image processing]: Digitization-quantization; 1.5.3 [Pattern Recognition]: Clustering

General Terms: Algorithms

Additional Key Words and Phrases: Algorithm analysis, clustering, color quantization, dynamic
programming, principal analysis

1. INTRODUCTION

To render continuous-tone color images on CRT displays, 24 bits (one byte for
each of the primary colors: red, green, and blue) are usually used to represent
the color of each pixel. However, most images contain only a small subset of
the sixteen million colors distinguishable by this encoding scheme. Very
often, 256 or fewer carefully chosen representative colors from an image
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suflice to reproduce the image without a noticeable loss of color fidelity. The
process of selecting a small number of representative colors from an image of
higher color resolution is called color image quantization. Color image quan-
tization is necessary when displaying continuous-tone color images on color
monitors that lack 24-bits/pixel full-color frame buffers. Even in the future,
when 24-bits/pixel frame buffers become affordable for all users, color quan-
tization will still retain its practical value, since it can relieve valuable frame
buffer space for animation, transparency, window applications, and other
graphics functions. Furthermore, color image quantization lessens the burden
of massive image data on storage and transmission bandwidth that are
bottlenecks in many applications, particularly when computer graphics is
integrated into multimedia systems or when HDW technology becomes
commonplace.

In 1982, Heckbert proposed the popular median-cut algorithm for color
quantization [ 18]. His algorithm recursively splits the RGB color space into
two subsets of equal color population using orthogonal cutting planes until K
rectangular boxes are formed. This structure of recursive bipartitioning is
identical to that of k-d trees [ 10], Within the same k-d tree framework, Wu
and Witten [43] changed the partitioning criterion from median-cut to vari-
ance minimization for better quantizer performance. They only gave a mean-
based approximation algorithm for variance minimization. Later, Wu devised
a fast exact algorithm for variance minimization [42] for partitioning color
spaces. Meanwhile, Wan et al. extended the work of [43] in the direction of
marginal variance minimization [39], i.e., sweeping a cutting plane perpen-
dicular to the R, G, and B axes separately and splitting the current box at
the position where the variance of the marginal distribution in the corre-
sponding axis is minimized. The above algorithms have a common drawback
that is inherent in tree-structured recursive bipartitioning. Namely, interme-
diate subsets are bipartitioned one at a time in total isolation from each
other. As a result, the intercluster interactions are ignored in attempting to
minimize the total quantization error. To correct this fundamental flaw, we
develop a new, color-space-partitioning strategy to simultaneously optimize
multiple cuts orthogonal to the principal axis of the color distribution. The
new partitioning strategy enhances quantizer performance, since it permits
minimizing quantization error across a much broader scope than the k-d tree
structure allows. Other new results in this paper are: the development of new
algorithmic techniques for efficient computations of color statistics and the
elimination of the prequantization step, which was required for efficient
implementation of previous algorithms.

There exist other color quantization techniques in the computer graphics
literature that are somewhat less relevant to this work, including the peano
curve scan [37], BTC coding [3], simulated annealing [6], and an octree-based
method [ 15], Color quantization/coding has been studied also by many
telecommunication researchers [9, 20, 30, 36]. In particular, color quantiza-
tion is an instance of vector quantization, a very active research field since
the late seventies in the communities of image coding and information
theory, The rich literature on vector quantization theory and techniques (see
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the reference list of [14]) should prove useful to color quantization re-

searchers and practitioners in computer graphics. Historically, color quanti-
zation researchers in image coding and computer graphics have had different
emphases. The former group aim primarily at reducing the bandwidth for
transmitting color video signals, whereas the latter group focus on frame
buffer size reduction with the hardware support of color lookup tables.
Besides its other uses in interactive graphics, color lookup tables provide so
far the simplest and hence fastest decoding scheme of compressed color
images onto a CRT display. This is probably why the quantization algorithms
based on color lookup tables gained their popularity in interactive graphics
where inexpensive real-time color decoding is a must, even though their
compression ratios are modest when compared with what is achievable by
other color-coding techniques [20].

This paper is organized as follows. In the next section, we formulate
optimal color quantization as a discrete optimization problem and reveal its
NP-completeness. In turn, this raises the interest in approximation algo-
rithms to the problem. In Section 3, we expose the inherent drawbacks of
recursive, orthogonal bipartitioning of the color space, which is common to
many existing color quantization algorithms. Overcoming these drawbacks
motivates our research. Section 4 contains the most important results of this
paper. In it, an optimal K-partition (K> 2) of the color space normal to the
principal axis of the data set is proposed for designing better color quantizes.
The process of finding such a K-partition is called optimal principal multi-
level quantization. A dynamic-programming algorithm is developed for find-
ing this partition. Complexity analysis is given to demonstrate that the new
optimization strategy can be made efficient enough to be practical. In Section
5, a locally optimal bipartitioning technique is integrated into the dynamic-
programming scheme to finish the color quantizer design process. Section 6
covers nearest-neighbor-searching techniques for mapping input colors to
their best representatives. Color dithering to improve the quality of quan-
tized images is also discussed. Experimental results and observations on the
perceptual behavior of the new algorithm are given in Section 7. Also, these
results are compared with those of Heckbert’s algorithm [18] and Wan et al.’s
algorithm [39].

2. PROBLEM FORMULATION

It was psychovisually established that color is trivariant long before the birth
of computer graphics. All current color models are defined in a three-dimen-
sional space. Thus, a color image of N pixels corresponds to a set S of N
points, c1 = (ciO, cil, Ciz), 1< i < N, in a three-dimensional color space such
as RGB, YIQ, L*u*v*, HSV, etc. In color image quantization, the point set S
is partitioned into K subsets Sk, l<k<K(Sh +~, Sj(7j. ~Sh= c$, and
u,, ~. ~ Sk = S) where all colors c E Sh are mapped to or approximated by,
a representative color zk = ( zko, zk ~, z&Z). Through this mapping an original
24-bit pixel Ci is represented by a (logz K)-bit integer that is an index into a
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color lookup table of K entries, one entry for each representative color. This
simple, indirect addressing mechanism reduces the frame buffer size by a
factor of 24/logz K, achieving a compression ratio of 3:1 for the typical table
size K = 256.

Mathematically, color quantization can be formulated as a large-scale
clustering problem. Our goal is to find the optimal K-partition of the set S of
three-dimensional color points to minimize the quantization error

E(S1, S2,..., SK) =
{

z~x
Iskl }

Ilc,, c,ll ,
l<A<K c,, cl ES b,t<j

(1)

where I[c,, c,, IIis a perceptually meaningful color distance between c, and c,.
The quantization error is defined to be the sum of in-cluster pairwise color
dissimilarities. Note that in the above formulation we allow the set S to have
duplicate elements to accommodate images that contain pixels having the
same color. This relaxed setting eliminates the need of the color frequency
function in ( 1); hence it saves a multiplication per pixel in evaluating the
objective function. The total saving is significant because over 90Yc of the
colors in a 24-bit natural image are distinct.

There are two important aspects of color quantization: a meaningful and
computable color measure Ilc,, c,, IIto quantify visual aesthetics and an effi-
cient algorithm to minimize the quantization error E. Perceptual color mea-
surement is a challenging color science problem and has attracted much
attention [20, 22, 23, 26, 28, 38]. If the ubiquitous Euclidean metric is to be
used in (1) then quantization needs to be performed in a perceptually uniform
color space in which IIc(j,clll = I[cl, czll if co and c1 differ as much as c1 and
c ~ in visual sensation, and this quantified difference is independent of c,.
Color quantization in perceptual color spaces instead of the device-oriented
RGB space was proposed by Kurz [ 19] and Gentile et al. [ 13]. However,
uniform color space alone does not suffice to quantify perceptual color dis-
tance since image context also plays an important role in human color vision.
The relative positions in image space of different colors influence our color
interpretation. Recently, Balasubramanian and Allebach [1] incorporated a
color activity criterion into a prequantization scheme to account for different
human observers’ sensitivities to quantization errors in different color con-
texts. Unfortunately, this technique remains highly heuristic and far from
offering a mathematical model for context dependency of colors to be inte-
grated into an objective function such as (1) for clustering colors.

In the sequel it is assumed that color quantization is carried out in a
perceptually uniform color space. We recommend the uniform L%u *v* color
space (CIE 1976) in which the perceptual distance Ilc,, Cj IIcan be approxi-
mated by the Euclidean distance between c, and c1. Note that even L*u*v*
color space is not perfectly uniform. But it is better than the RGB space
which was previously used solely for convenience. The transforms between
L*u’l!* and other color spaces can be found in many sources [8, 27, 28] and
has been omitted here for brevity. Let Ilc,, c, II be the Euclidean distance
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between Ci and Cj

X Ilci,cjll
c,, cl=sh, i<j

in the L*u*v* space; then we have

—— z [(ci,O- cj,0)2+ (ci,l-cj,l)2 +(ci,’2-c~,2 )2]

c,, cJGSh, i<j

=Iskl z [C?,O+C?,l +4,21
c,=s~

-[czskci012-[.:s&c’1r-[c:skci2r
=Ishl ~ [( C1,o-zk, O) 2 + (Ci,l ‘Zk,l )2+ (Ci,~ ‘zk, ~)z

1
c,es~

where

x c,= shci,J
Zk, j =

ls~l ‘
j= 0,1,2

(2)

(3)

is the jth component of the centroid of sk. Thus we simplify (1) to

Clearly, the above formulation is an image-dependent but context-free color
quantization scheme. The context-free treatment may compromise the subjec-
tive image quality, but it offers acceptable solutions in practice before a
tractable, context-dependent color measure is known.

Minimizing (4) over all possible K-partitions is a K-clustering problem,
which was shown to be NP-complete for variable K [2, 12, 26].1 Conse-
quently, any solution to optimal color quantization will necessarily be heuris-
tic and approximate. From now on we will concentrate on an algorithmic
approach to statistical color quantization. The study of color quantization
algorithms is important in its own right, independent of color measures for
two reasons: (a) color quantization as a frame buffer technique has to be
performed under severe time constraints; hence algorithm efficiency is cru-
cial; (b) a good strategy of minimizing (1) under one color measure may lead
to an efficient quantization algorithm under a better color measure should it
become available. In fact, the following algorithm developments are indepen-
dent of color spaces.

3. BIPARTITIONING TECHNIQUES AND THEIR LIMITATIONS

Previous color quantization techniques [15, 18, 39, 43] share a common
algorithmic structure, namely, recursive orthogonal bipartitioning of color
space. Instead of optimizing the K-partition of the set S which is itself an

* In [39], the proof was credited to a wrong reference.
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NP-complete problem, we try to compute (approximate) the optimal biparti-
tion of S into S1 and Sz, i.e., to minimize the sum E(S1 ) + E(SZ ), where

E(SJ) = ~ IIc, zJII. (5)
C6.9,

After S is cut into S, and Sz, the same bipartitioning is carried out on S1
and Sz and then to the subsequent subsets until K subsets (clusters) are
generated. The partitioning process is structured as a k-d tree whose root is
S, each of whose K – 1 internal nodes corresponds to a bipartition, and
whose K leaves are the final K subsets S1, 1 s j s K. The K centroids z, are
the K representative colors to be loaded into the color lookup table. In
quantization literature, quantizes embedded in BSP trees are called tree-
structured vector quantizes [ 16].

The original k-d tree [ 10] partitions the space with orthogonal cutting
halfplanes, and early color quantization algorithms [ 15, 18, 39, 43] adopted
the orthogonal partitioning scheme. However, realistic color image data are
not generally distributed orthogonally in the color space. It is intuitively clear
that cutting halfplanes should be set normal to the principal axis along which
the color points have the maximum variance rather than normal to one of the
three axes, if our goal is to minimize E(SI ) + E( Sz ) when splitting S into S1
and Sz. Indeed, this principal cutting strategy was successfully applied to
color quantization by Wu [40]. The principal axis is given by the principal
eigenvector of the covariance matrix of the input data. Arbitrary spatial
partitioning for color quantization was reported also by Orchard and Bouman
[30]. Historically, splitting a vector space with arbitrary halfplanes to cluster
multivariate data dates back to 1963 [29]. This sort of spatial partitioning
method is not new in computer graphics, either. The color-space-partitioning
tree with arbitrary cutting halfplanes described above can be regarded as a
particular type of binary spatial-partitioning tree (BSP tree). It was used by
Fuchs et al. [11] for efficient visibility determinations. The apparent differ-
ences are only in the spaces in which the trees are constructed and the
partitioning criteria. For convenience, we simply refer to the partitioning tree
in the color space as the BSP tree.

In general, the order in which the BSP tree grows during the clustering
process matters to the optimality of the resulting color quantizer. The sim-
plest order of repeated bipartitionings is blind recursion. Before growing to
the next level, each internal node of the binary tree at the current level is
split regardless of its statistical characteristics. Smaller quantization distor-
tions may be achieved by more elaborate tree-growing techniques. An obvious
alternative is to split the node with the largest variance. Still a better
criterion is to split the node whose bipartition yields the largest reduction in
the total quantization distortion. More precise] y, let 11,, 1 < j < k < K, be
the k current subsets subject to further subdivisions, and let {1,,, and !1,, ~ be
the two subsets of flj if it is split by the optimal cutting halfplane. Then the
next subset to be split is fl~ such that

(6)
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Fig. 1. A bad 4-partition formed by greedy bipartitions.

Although the algorithm combining principal cutting halfplanes and the
look-ahead 13SP tree construction by (6) [40, 44] can improve orthogonal
cutting methods [18, 39], it still suffers from an extremely narrow optimiza-
tion scope as its predecessors do. The optimality is compromised by the
greedy bipartitioning strategy. Namely, the aim of each bipartitioning is the
immediate profit of minimizing E(SI ) + I?(SZ ), regardless of its impact on
further subdivisions of S deeper in the BSP tree. This greedy local criter-
ion may contradict the global criterion of minimizing (4). Even in two-
dimensional space it is not difficult to find such adverse cases. For in-
stance, in Figure 1, three successive greedy bipartitions clearly yield a bad
four-partition of the data set.

Recently, Chou et al. [4] and Lin et al. [21] suggested an improvement to
quantizer performance by growing a BSP tree of more than K leaves and
then optimally pruning the tree back to a subtree of K leaves. But our
experiments showed that the quantization distortion reduction by optimal
tree pruning was minimal and hardly justified the incurred heavy computa-
tional cost. The main reason for the ineffectiveness of optimal tree pruning is
that the decision is binary: a cut is either kept or removed, never adjusted.
Furthermore, the top structure of the BSP tree remains immune from the
optimal pruning.

The limited optimization scope is an inherent and severe drawback of a
tree-stmctured greedy bipartitioning strategy. We need an approach that
permits an optimization of multilevel partitioning in a global sense.

4. OPTIMAL PRINCIPAL MULTILEVEL QUANTIZATION

4.1 Motivation

First, we reveal a statistical characteristic of color image data beneficial to
the design of our new color quantizer. Suppose, as in our previous algorithm
[40, 44], that the data set S is split into S1 and Sz by the optimal cutting
halfplane normal to the principal axis of S, and the BSP tree grows in a
look-ahead-greedy fashion. Let {Hi: i = 1,2, “””} be the sequence of optimal
cutting halfplanes generated by the above process. We observed consistently
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that for some K, the principal axes of the resulting subsets created by the
first few cuts Hi, 1 s i < K, remained approximately the same as the princi-
pal axis of the original data set S. Consequently, the halfplanes H,, 1 s i < i.,
are almost parallel to each other and all approximately normal to the
principal axis of S. The critical value of K varied from four to eight depend-
ing on different color images. This finding is due to the fact that the color
distribution of a natural scene is not isotropical in the three-dimensional
space; rather, the color points spread out in the intensity direction (Y
component in YIQ color space, V in HSV space, and L* in L*a*b” space)
much more than in the planes of the other two chromaticity dimensions. The
same statistical nature of color image data was previously well documented
by many researchers [3, 9, 17, 20, 31, 33], and it has inspired the following
better heuristic for optimal color quantization.

4.2 Optimal Principal Quantizer

The performance of a color quantizer can be improved by simultaneously
choosing H,, 1 s i s K, rather than choosing H, greedily and one at a time,
in minimizing the quantization distortion. This accounts for the chain inter-
actions between clusters ignored by the greedy approach and minimizes the
quantization distortion in a much broader scope. The question is how this
global optimization approach can be made computationally feasible. Fortu-
nately, the fact that the halfplanes H,, 1 s i s K, are almost parallel facili-
tates the following constrained global optimization scheme.

The basic idea is to optimize multiple cuts against the principal axis of the
data set S. This axis can be determined by the classic principal-component
analysis technique [24], that is, by finding the largest eigenvalue Am., and
the corresponding principal eigenvector v of the covariance matrix C of S,
i.e., Cv = A.le Xv. Then all N color points c = S will be sorted by their
projections on the principal axis given by v, i.e., c, < c,, iffc~v < c~v. In the
computation, v needs to be normalized. The eigenvector transform and the
sorting constitute a map R : S’ - {1, 2,..., N}, with R(c) ==i meaning that the
projection value c~v ranks i in the sorted list of N projections. Now we
define a finite set

Q:={qlo=qosq,<qz<””<qk..l< qh=n)CK&’l, (7)

where x is the set of all natural numbers. Then a q E Q: corresponds to a
k-partition of the point set S(O, n] = (c :0 < R(c) < n) into subsets:

S(q, 1,q,] = {C : q, , < R(c) s q,), 1 s i s k. Notice that the intervals in-
volved are open on the left but closed on the right.

The vector q G Q: is called a k : n principal quantizer since it quantizes n
multivariate points into k parallel cells bounded by k – 1 cutting halfplanes
normal to the principal axis of S(O, n]. The quantization distortion of the i th
cell is
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where z ~ is the centroid of the point set S( qi _ ~,qi ]. Given a critical parame-
ter K, the total distortion of a K : N principal quantizer q E Q; is

Under the above formulation, minimizing E(q) over all possible K : N quan-
tizes q G Q: means minimizing the total quantization distortion over all
possible K-partitions of S generated by parallel halfplanes normal to the
principal axis. We define the optimal K : N principal quantizer q to be the
one that minimizes (9), i.e., q = arg min~ ● ~fiE(q).

It is important to realize that E(q) is still defined in .sZ3 not in 9. Thus the
k : n principal quantizer q ~ Q$ is a uector, not a scalar quantizer. The
optimal principal quantization can be considered as a hybrid method of two
existing types of color quantization methods: component based and vector
based. The component-based methods [9, 31, 36, 39] quantize color compo-
nents independently as scalars, whereas vector-based methods [15, 18, 40,
43] quantize colors as trivariant data, The component-based methods give
higher priority to the luminance component because the dynamic range of
luminance is significantly larger than that of the chromaticity components
and because errors in chromaticity are less visible than errors in luminance.
Another advantage of the component-based methods is that each color compo-
nent can be treated as a one-dimensional signal and can be quantized with
computational ease. In contrast to the NP-completeness of optimal vector
quantization, optimal K: N scalar quantization was recently shown [34, 41]
to be solvable in O(KN) time. However, the combined result of separate
quantization of luminance and chromaticity can be far off the optimal color
quantizer since the chromaticity distribution usually varies at different lumi-
nance levels. Furthermore, due to the limited gamut of the physical devices
[38] the achievable range of chromaticity varies also at different luminance
levels. Note that the principal axis of S is very close to the luminance axis
since luminance has a much larger dynamic range than chromaticity. The
optimal principal quantization preserves the advantages of component-based
quantization by setting cutting halfplanes normal to the principal axis of S,
thus on a luminance-first basis, but not at the expense of chromaticity
quantization since the multilevel partition is optimized under the original
three-dimensional distortion measure, not a one-dimensional distortion mea-
sure.

4.3 Dynamic-Programming Algorithm

()The size of the search domain for minimizing (9) is IQ; I = KN~ll =

O(NK - l). Finding the optimum by enumeration is still intractable for modest
N and K, K < N. A more sophisticated algorithm is needed.

The first t cells of a k : n principal quantizer q c Q:, 1< t < k, k < n, give
a t-partition of the point set S( q., q~]; thus by definition, they form a t:qf

principal quantizer. It can be proven by contradiction that the first t cells of
the optimal K : N principal quantizer q must be the optimal t : qt principal
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quantizer on the subset S( cjo, if]. This property, called the principle of
optimality in the optimization literature, enables a dynamic-programming
algorithm to compute the optimal K : N principal quantizer q, which is a
generalization of the optimal scalar quantization process [41].

Denote by q: the optimal principal k : n quantizer, and let ~ k, n ] be the
(k – l)th parameter of q:, i.e., ~ k, n] - (q% )A ,. Then the principle of
optimality can be expressed as

L[k, n] = arg~~,i~~{ll(q$-’) +%(i, n]}, 2<k<rz <N. (10)

Hence U k, n ] can be determined by a linear search provided that E(q$ 1),
k < i < n, are all known. once ~ k, n] is determined E(q~ ) becomes known
also by

JW6:)= E(4!.[:,.1)+ S(L[k, rz], n], 2<k<n <N. (11)

This suggests that qfi can be constructed by bottom-up dynamic program-
ming. First note that the distortions of one-level quantizes are trivially
E(q\) = 8(0, n], 1 s n s N. Then, by (10) and (11), L[2, n] and E(q~), 2< n
< N, can be computed and stored as intermediate results for later use. In
general, the dynamic-programming process determines u k, n] and E(q~ ),
k < n s N, by referring to E(q~- 1), k – 1< n < N, and it remembers all the
results recently obtained to facilitate the computations of ~ k + 1, n ] and
E(q~, ~), k + 1< n s N. The process terminates when k has been incre-
mented from 2 up to K and when a K, N] is finally obtained. The parameters
of optimal K : N quantizer q; can be reconstructed backward then from

q. = N and the relation (tih ), = M i, (Qh ), +11. The pseudocode of the algo-
rithm is given below.

Algorithm. Optima/quantizationby dynamic programming.
Input: N,k,S,P.
output:
Globals: %] = E(~~ ‘), L[k, nl = (Q:),. ,;
Initialization: E[n],=3(0, n], lsns N; L[k, JC]:=k-l, 1<1( SK.
begin

fork: =2to~do
forn:=k +lto N–K+k do begin

cut:= n–l; e:= E[n–ll;

fort= n-2downtok-ldo
if E[t] + X(t,n] < e then begin

cut := t; e := E[tl +X(t, nl;
end;
L[k, n] := cut; E[rr] := e;

end;
output Lchain(K, N) as Q;;

end.
function Lchain(k, n) : q 6 Q#:
begin

t := n;
forj:=k– 1 downtol doq, :=t:=l, [j+l,t];
return(q);

end
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4.4 Complexity Analysis

In this section we will study the time and space complexities for computing
an optimal ~ : N principal quantizer q;. In general, all color points c = S
may have N distinct projection values CTV, resulting in a huge search domain
for the dynamic-programming algorithm. However, on second reflection, real
arithmetic on the principal axis is unnecessary in practice since the intensity
resolutions of frame buffer displays are discrete and have a small dynamic
range, typically being integers from O to 255. Therefore, without loss of
precision achievable by the digital devices, we put N projections into M < N
buckets and approximate q: by q~. This allows also a linear-time ordering
of the N projections by the bucket sort algorithm. In our experiments
M = 512 was found sufficient. By comparison, the previous algorithms [18,
39] employed simple truncation of the least-significant bits of each component
of the input data to reduce the problem size. However, this treatment
sacrifices the optimality by cutting the precision of the algorithm below that
of the device.

The following analysis is based on M not on N, although the algorithm
was derived for iV for conceptual clarity. In the kernel of the dynamic-pro-
gramming algorithm, the quantization distortions %( a, b], O < a < b < n,
are repeatedly evaluated. To gain efficiency, we can precompute %’(a, b] for
all possible pairs a and b and store them for future reference. Since there are
0( M‘ ) possible pairs a and b, such a preprocessing seemingly needs O(M 3,
time and 0( M 2) space. But the following manipulations lead to a linear-time
scheme. Notice that

%’(a, b] = ~ (c - Z)T(C- z) = ~

{

~ c~ _ ‘za<R(c)~bc~]2
xU< R(C)SLI d=O a< R(c)<b a< R(c)<b

)
1“

( 12)

Now define the quantities

w,(~>n)= z c., o<ds2,
O<mc)sn

w,(n) == ~ 1, (13)
O<mc)<n

where all W, are the i th cumulative moments, and use them to rewrite (12)
as

Z~=OIW1(d, b) – W1(d, a)]2
%(a, b] = W2(b) – Wz(a) –

We(b) – WO(a) “
( 14)

Therefore, if the Oth, lst, and 2nd cumulative moments in (13) are precom-
puted and stored for 1< n < N, O < d <2, then %’(a, 6] can be evaluated
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in 0(1) time. Consequently, the inner t loop of the dynamic-program-
ming algorithm can be executed in 0( n – k ) time. Thus, the total computa-
tional cost of the dynamic-programming process is determined by the simple
counting:

K M–K+k

x x (n-k) =~[(M-K)2+M-K]. (15)
k=2 n=k+l

Clearly, O(N) times sufllces to precompute and save the quantities Wz(n),
Wl(d, n), d = O, 1,2, and WO(n), 1< n < M, and O(K) time is taken by the
function kchain( K, M), both being insignificant in the presence of (15). The
cost of the eigenvector transform prior to dynamic programming is dominated
by the construction of the covariance matrix C, which takes 0(N) time.
Computing the N projections on the principal axis and ordering those
projections by a bucket sort each takes 0(N) time. Adding up all these costs,
we conclude that the optimal K: M principal quantizer can be computed in
0( KM 2 + N) time considering that K < M.

The space complexity of the dynamic-programming algorithm is 0( KM )

because the K X M array L is maintained to reconstruct qfi. If this space
complexity is too high for a small machine, we can reduce it to 0(M) by a
slightly more complicated logic and at a small penalty on execution time. In
order not to lengthen the paper we only sketch the technique. Consider
q = q~ and assume that K is a power of 2 for simplicity. We first determine
the middle cutting position of qfi by

~K,2 = arg min {E(CI:/2) + E(q~2i)},
K/2 Si<~– K/2

(16)

“ K/2 & the optimal K/2 : (M – i) principal quantizer on the subsetwhere q ~ _,
S(i, M]. The dynamic-programming computation for qfil~ i is the same as for
“ Kj2 on the subset S(O, i]. The only difference is that the former uses theq,
index M while the latter uses the index O as the fixed reference point in the
search. To save working space in the bottom-up dynamic programming we no
longer save the optimal cutting positions of q&/3 ~ and q~/2 in L arrays. In
this way we can only find Q.,2 by spending 0( KM2 ) time, with 0(( K\2)M2 )
time for each of qfi/3 i and q~/2 plus O(M) time for the linear search of (16).
Then recursively, we can set O.il = arg minKIAs is ~. ~tA(E(q;/’) + E(q;f~)}
by computing q:i4 on S(O, i] and q;!: on S(i, ~1, where f = tj.,2. Thus
finding Q.,4 incurs an 0(( K/4), M 2) cost but using only linear space. Like-
wise, with the same costs, we can set ti~~,4. Now it becomes clear that q;
can bedonein 2KMz Zl<j~lO~(. _l) 2-J = O(KM2) time while using only O(M)

space with the described technique. In the worst case the above 0( M )-space
algorithm doubles the execution time of the 0( KM )-space version.

4.5 Termination of Principal Quantization

As the bottom-up dynamic-programming algorithm proceeds the distributions
of color points in the quantization cells S(cji ~, 4,], 1 < z < k, become less
and less biased toward the principal axis of S for increasing k. The algorithm
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should terminate with the output q ~ when for some k = ~ none of the data
A

* 1 1< i < K, has a strongly biased orientation in the principalsets ‘(qi-1> q~ ,
direction of S. Otherwise, if the algorithm continues for k > K, its output ~~
can differ significantly from the globally optimal h-cell quantizer. The critical
parameter K for the optimal principal quantizer q~ vanes from image to
image, but it can be determined during the bottom-up dynamic-programming
process by examining the eigenvalues and eigenvectors of S(~i _ ~, @i], 1 s i <
k, as k increases, to detect the shift of principal axes. The covariance matrix
C = ll{cc~) – E{c)[ ll{c}]~ of S(@i _ ~, ~i ] consists of nine covariances (six of
them are distinct due to the symmetry of C), namely,

(17)

If the above matrix is to be evaluated straightforwardly for each subset
S(@, _ ~,~, ], 1 s i s k, at each level of dynamic programming, 0( KN) opera-
tions are needed just to correctly terminate the dynamic-programming pro-
cess. But a similar statistical preprocessing to (13) can reduce this cost to
O(N + K 2, thanks to the order already established on color points c G S by
their projections C*V. Indeed, let

w,,,(n)= ~ Crc,, (18)
O< R(c)<n

then precompute and store Wr, .(n) for 1 < n s M and O s r s s s 2; we can
simplify (17) to

cr,s =
‘r, s(4i) – ‘r, s(di-1)

W()(~~) – ‘O(di-1)

[W~(r,@i) - ‘~(r,di-l)][wl(s>di) - ‘l(s!O1-l)l , ~19)
—

[wO(@i) - ‘0(4,-1)12
where WI and W. are the cumulative comments introduced in the previous
section. Therefore, a covariance c, ~ can be evaluated in 0(1) time indepen-
dent of the size of the subset S(@~_ ~, @i]. Clearly, precomputing and saving
all W,,,( n) require 0(N) time and 0(M) space. They will not change the
complexity order of the entire algorithm.

5. LOCALLY OPTIMAL BIPARTITIONING

After the optimal principal quantizer qfi is computed and if K < K, we still
need to further partition the subsets S( cji_ ~, ~i ], 1 < i < K, until the required
K clusters are formed. Unfortunately, we can no longer carry out a global
optimization in the way in which the optimal principal quantizer is con-
structed, because none of the S(~i _ ~, ~i ] has now a predominant enough
principal axis b have two or more locally optimal cutting halfplanes parallel
to each other. So we resort to the local optimization approach and bipartition
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the current subsets S( @l ,, ~,] one at a time and under some optimization
criteria as discussed in Section 3.

Many heuristic spatial-division methods [18, 39, 43] can be applied at this
stage. A more elaborate, locally optimal bipartitioning method [40] is to
sweep a cutting halfplane normal to the principal axis of a data set and split
it at the position where the sum of the distortions of the two resulting subsets
is minimum. If the data set subject to bipartitioning is S( ~1 ~, ~,], a cell of
the optimal principal quantizer q~, then its covariance matrix can be
obtained in 0(1) time with the technique of (19); thus its principal axis is
known through an eigenvector transform. Due to the small dimensionality of
our problem, the numerical computation of the principal eigenvector v of the
3 X 3-symmetric, positive definite covariance matrix is fast and robust. Next
we sort the color points c E S( cjl ~,~,] by their projections onto the principal
axis to facilitate the halfplane sweep. Again, as argued in the previous
section, a linear-time bucket sort suffices for our purpose.

Let S1( f ) and Sz( f ) be a bipartition of S(6, ~, ~,] formed by the halfplane
normal to and positioned at coordinate ~ of the principal axis. Our goal is to
find the optimal cutting position &,Pt, i.e.,

= arg min
{ }

~ (C- Z1)T(C-Z1)+ ~ (C- Z2)T(C-Z2) .
( C=S,(f) ceSJE)

It can be verified after some manipulations that

~ (C- Z,) T(C-Z1) + ~ (C- Z2)T(C-Z2)

Note that the first term is now a constant for any given S; the minimization
problem of (20) is equivalent to the maximization one:

in which EC~s cd is also a constant for any given S. The primitive operation
in the above maximization process is thus Xc ~ ~,(~~cd, and it can be done
incrementally. Suppose that gl and &2 are two consecutive ordinates on the
major axis after the bucket sort of projections CTV, c = S. Then we have

(22)
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Since the data set S is sorted by CTV we can retrieve all those c satisf~ng
CTV = (z by simply marching in the sorted list from ~1 to [z and evaluate
ZC7V. ~,cd along the way. After this, XC. ~,(~,,Cd can be incrementally ob-
tained in constant time from EC. .S,(~,)cd. Based on the above analysis we
finally conclude that foPt defined in (21) can be found in time linear to the
size of the data set.

This halfplane placed at &P, optimized on the principal axis can be
adjusted then by a two-mean, iterative clustering process [25] to achieve a
local optimum. This, too, can be done efficiently. Given two tentative cen-
troids z ~ and Zz of the two subsets SI and Sz, we have the three-dimensional
halfplane equation (c – z~ )~(zz – Zl) = O, where z~ is the midpoint of the
line segment connecting z ~ and Zz. Then we can determine the cluster
membership of a color point c E S in Sj, j = 1,2, by substituting the c into
the plane equation and checking the sign of the result. If positive, c is closer
to z ~; otherwise it is closer to Z1. Since the starting halfplane of the two-mean
clustering process is already optimized normal to the principal axis, very few
iterations sufllce for the iterative clustering algorithm to converge to a local
optimum.

6. QUANTIZER MAPPING AND DITHERING

Through a dynamic-programming process for optimal principal quantization
and the subsequent locally optimal bipartitioning we obtain a good color
quantize~ i.e, the final K representative colors zj, the centroids of Sj,
1< j s K, are chosen and loaded into the color lookup table for a frame
buffer. The next step, called quantizer mapping in the sequel, is to map all
input colors of S to some z j. Clearly, in order to minimize the quantization
distortion for the given color quantizer, the quantizer mapping should be a
nearest-neighbor match; i.e., a color c is mapped to Z& such that &=
arg mini., ~ ~ Ilc, Zjll. In other words, the quantizer mapping has the struc-
ture of the three-dimensional voronoi diagram on the K centroids Zj. Note
that the final K-partition of S created by the new algorithm, Sj, 1 s j s K,
generally does not constitute a voronoi partition on K representative colors.
However, it was found in our practice that the simple quantization of c = Sj
to Zj did not cause a significant increase in numerical quantization error nor
a noticeable loss of image quality from the nearest-neighbor mapping. This
observation suggests that the cluster membership of c, known from the
quantizer design process, can be directly used for a good quantizer mapping,
saving the expensive nearest-neighbor search. In contrast, in order for the
previous algorithms [18, 39] to get good results, the nearest-neighbor map-
ping is essential.

For small K, dithering is often necessary to reduce the false contours in the
quantized color images. In this case, a c ● Sj maybe quantized to some other
centroid z~, if c + e = Sl where e = $?3 is the distributed error vector from
the neighboring pixels in the image space. The original cluster membership of
c can no longer serve as a quantizer-mapping function. A three-dimensional
range search based on nearest-neighbor rule must be conducted to quantize
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the composite color value c + e. Nearest-neighbor search is a well-studied
topic in computational geometry [32]. The classic k-d tree [10] method can
answer a nearest-neighbor query in O(log K) expected time. The k-d tree can
be built in O(K log K) time. With the support of this data structure the
nearest-neighbor quantizer mapping of an entire color image can be effected
in 0( N log K) expected time. A faster but suboptimal (not necessarily near-
est-neighbor match) alternative is to build the BSP tree explicitly in the
quantizer design process and then use it as a binary search tree to determine
the relation c + e E S1. The internal nodes of the BSP search tree represent
a spatial cut, and its K leaves contain K representative colors. The query
point y = c + e, given an input pixel value c and its inherited error vector e
in dithering, is checked against the cutting halfplanes along a path starting
from the root of the BSP tree until it reaches a leaf node S,; then the color z ~
is assigned to the query pixel.

In the computational geometry literature [32] the trees for range search are
often height balanced to achieve logarithmic query time in the worst case.
But in color quantization, we are concerned with the amortized (not the
worst-case) time complexity. It is the total cost of allocating N query points
in K quantizer cells that needs to be minimized, not the single-shot query
time. Let 1, be the length of the path from the root of the BSP tree to the leaf
node containing S,. The optimal search tree for our problem should minimize
x 1. ~s K1s,,11, Which is the total number of comparisons required by the
quantizer mapping of an entire image. To this end we need to balance the
BSP search tree in terms of the color population rather than its height. For
any internal node we will let its left and right subtrees have approximately
the same number of color points. Such a population tree balancing is straight-
forward with the optimal multilevel principal quantizer qfi while being quite
tricky with a recursive, greedy, bipartitioning algorithm. The root of the
search tree corresponds to the halfplane normal to the principal axis of S and
placed at ~f such that t = arg mini{l IS(O, ~,] I – N/2 l). This equal-population
criterion can be applied recursively in shaping the search BSP tree until we
move into the subsets of some cell of the optimal principal quantizer
S( ~,, 0,. ~1. Now we can appreciate more the global impact of optimal multi-
level principal quantization. Unlike the greedy bipartitioning approach that
can only optimize a tree-structured quantizer node by node, the new algo-
rithm optimizes the top of a quantizer tree globally for minimizing both the
quantization distortion and the quantizer-mapping time. With a population-
balanced tree, the total quantizer-mapping time can be bounded by
O(N log K) in the worst case, which occurs when each quantizer cell has the
same color population. Note that the previously claimed O(N log K) cost for
quantizer mapping by the kd tree method is only the expected behavior of
the algorithm. Its worst-case time complexity is 0( KN ), and this could
indeed happen for some data sets [35].

7. EXPERIMENTAL RESULTS AND REMARKS

The proposed color quantization algorithm was implemented and tested on
twenty 24-bits/pixel color images. The new algorithm obtained significantly
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Table I. QuantizationErrors of Different Algorithms on Test Images

Median-Cut Wan et. al. New
K Zelda Toys Zelda Toys Zelda Toys
16 1328.9 1076.4 1294.6 1138.3 301.9 211.5
32 1228.1 695.7 581.9 466.6 156.3 103.1
64 713.2 343.2 304.1 253.2 78.7 57.3

256 79.5 68.3 69.6 52.6 24.0 20.4

smaller quantization distortions than the median-cut algorithm [18] and
marginal-variance minimization algorithm [39] on every test image. On the
average, the quantization error of the new color quantizer is 24.3 ?ZOof the
marginal-variance minimization algorithm and 19.4% of the median-cut-al-
gorithm. The improved quantizer performance is due primarily to a better
quantizer adaptability to color statistics that is achieved by the new color-
space-partitioning technique of optimal principal multilevel quantization.
Another important contributing factor to improved pefiormance is that the
new algorithm eliminates the step of prequantization used by previous
algorithms [1, 13, 15, 18, 39, 43] just as an expediency to control space
complexity. These previous algorithms need color data to be organized in a
sparse three-dimensional array whose size is unmanageable without pre-
quantization. By projecting color points onto the principal axis the internal
data representation becomes a compact one-dimensional array, rendering
prequantization unnecessary. Currently, the common prequantization prac-
tice seems to simply chop three least significant bits off as first suggested in
[18], losing quantizer precision by three bits even before clustering. This
drawback is completely overcome by the new algorithm.

Since the ultimate judgment for any quantization algorithm in practice
should be subjective image fidelity, we present in the color plates quantized
images by different algorithms for various K. The mean-square quantization
errors of two 1S0 test images, Zelda and Toys (Plate I), are tabulated in Table
I. Plates II-VIII show different quantization algorithms applied to the
image Zelda. When K = 256, the new algorithm reproduced images that are
virtually indistinguishable from the originals even without dithering; the
median-cut algorithm still produced some false contours; Wan et al.’s algo-
rithm is better than the median-cut algorithm, but it has subtle differences
from the new algorithm. For instance, in Plate H(b) Zelda’s lip lines are
slightly jagged, and the shadow on her neck is not as smooth as in Plate II(c).
As the number of colors decreases the three algorithms behaved very differ-
ently. Human subjects seemed to prefer the images quantized by the new
algorithm to those by the other two.

A characteristic of marginal-variance minimization that was not mentioned
in the original paper [39] was observed in our experiments. By always cutting
the component with the largest marginal variance this component-based
method favors luminance over hue quantization. Consequently, it tends to
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(al Median-cut. Quantization is visible along
the left  side  of the face.

(al Median-cut.

(bl Marginal variance minimization. tbl Marginal variance minimization.

(cl New  algorithm.

Plate  II. Comparison of median-cut, marginal
variance  minimization and the new algorithm
for K = 256.

(cl New  algorithm.

Plate III. Comparison of median-cut,  marginal
variance minimization and the new algorithm
for K = 64.
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(4
Plate  IV. Median  cut algorithm  for  K = 1t

(b)
L (a) without  dithering(b)  with dithering

(4 (b)

Plate  V. Marginal  variance  minimization for ,K = 16. (a) without  dithering(b)  with  dithering.

(4 (b)

Plate  VI. Uniform  quantization for K = l(!i. (a) without  dithering(b)  with dithering.
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(a) (b)

Plate  VII. New  algorithm for  K = 16. (a) without dithering(b)  with  dithering.

Plate  VIII. New  algorithm for  K = 16, with
smoothness emphasis without dithering.  Com-
pare  to Plate VII (a).

quantized  by this algorithm seemed  to have  a false  reddish  tone when
K = 64. For K = 16 this algorithm almost reduced  the Zelda  image  to a
gray-scale image of dominant hue. We can imagine this smoothness emphasis
taken to the extreme.  If all K representative colors were chosen as gray
scales,  then color quantization is reduced  to scalar quantization, and the
output would  be a smooth but monochrome image.  The new algorithm aims
at a good  balance between the smoothness and hue accuracy through optimal
principal  quantization in Section  4.2, and this goal  seems  to be realized
according to the color plates.

To minimize the total quantization distortion the new algorithm switches
from optimal  principal quantization to locally optimal bipartitioning when
the current data  subsets no longer have their principal axes  agree  with that
of the original data  set S. But if the smoothness of the quantized image
outweighs its hue precision for an individual’s taste,  we can delay  the
transition of the algorithm from optimal  principal quantization to locally
optimal  bipartitioning. Perceptually this means  that more  information capac-
ity is given to luminance than to hue. The user can retain this control  by
setting the critical  parameter  K. To show  what happened  when  a user
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instructed the algorithm to give smoothness a higher priority we give in Plate
VIII a 16-color image that was quantized with two more cuts in the principal
direction than the one in Plate VII(a). If we need to trade hue for luminance
when the color quota K is not adequate to satisfy both, principal optimal
quantization is a better compromise than marginal-variance minimization.
By minimizing three-dimensional color distortion under the constraint of
cutting the principal (luminance) axis, the new algorithm does not completely
ignore the hue distributions as in [39].

For K <64 even the new algorithm generates objectionable false contours.
Floyd-Steinberg’s dithering technique [7] was employed to reduce the contour
effects. Dithering noticeably enhanced the performance of color quantizes
(compare (a)’s and (b)’s in Plates IT-VII). However, a better quantizer
designed independently of dithering will not necessarily perform better after
dithering. For example, the uniform quantizer performed by far the worst
without dithering (Plate VI), while its dithered version is superior to the
dithered images of the median-cut algorithm and Wan et al.’s algorithm. The
comparison between the dithered images of the uniform quantizer and the
new algorithm is less conclusive. Judging by the photographs the reader may
find that the higher color contrast in Plate VI(b) makes it more visually
appealing than Plate VII(b). The representative colors of a uniform quantizer
have a wider span over the color space than a statistical quantizer. Conse-
quently, the dithering can simulate a wider spectrum of colors with the
former than with the latter. However, the adjacent pixels in a smooth region
may be mapped to drastically different colors by dithering, magnifying the
artificial dither textures. Indeed, at a closer look Plate VI(b) is much noisier
than Plate VII(b) with more prominent dithering patterns. The problem is far
more severe on a color CRT where the image in Plate VI(b) resembles a color
television signal corrupted by snow noise. Even in the prints we can observe
that the dithered image of the new algorithm retains much finer details
(Zelda’s eyes, hair, and neck shadow, say) than the dithered image of the
uniform quantizer.

For practical considerations, when K >256 previous algorithms [ 15, 18,
39] often give satisfactory results at higher speeds, especially if these orthog-
onal bipartitioning methods are sped up by the tricks published by Wu [42].
The new algorithm is more advantageous when high-quality color reproduc-
tion for small K is required. In a windowing system running multiple
applications a common color map is desired. In this case, dithering based on a
uniform sampling of the color gamut in a perceptually uniform space should
offer a simple and often effective solution if the device can address more than
100 pixels per inch. However, if a window has a strongly biased color
distribution the dithering based on an image-independent set of prefixed
colors will perform very poorly since many colors in the lookup table cannot
be effectively used by dithering, wasting the information capacity of the
device. Fidelity gain can be achieved by good image-dependent color quan-
tizer if it can be computed fast enough. Thus, lower time complexity of the
quantization algorithm can translate to higher image quality, justifying the
research on algorithmic approaches to color quantization.

ACM Transactions on Graphics, Vol. 11, No. 4, October 1992.



370 . Xiaolin Wu

In addition to the lack of a context-dependent color measure that can be
integrated into an optimal color quantizer definition, two more interesting
and important problems in color quantization are still open: (1) a definition
and approximation algorithm of an optimal color quantizer for a chosen
dithering process; (2) an on-line algorithm for color quantization, i.e., dynami-
cally update the contents of the color map according to the change of color
distribution in time, for instance, during an animation. Finally, a word of
warning for the sake of rigor, the optimal principal quantization defined by
(9), under the constraint of cutting orientation, is only a better heuristic
method guided by a common statistical characteristic of color images to
approximate the solution of the original NP-complete problem of optimal
color quantization. A nontrivial bound on the difference between the true
global minimum quantization distortion and that of the new algorithm or any
other heuristic algorithm still remains elusive.

8. CONCLUSIONS

A novel color-space-partitioning strategy is presented for color quantizer
design based on our observation that the colors of an image have a significant
statistical bias along the principal axis of the input data. A color space is
optimally partitioned into multiple quantizer cells in the principal direction
of the input data, rather than bipartitioned recursively and orthogonally as
done by current color quantization algorithms. The total quantization error of
multiple quantizer cells in the principal direction can be minimized by a new
algorithm using dynamic programming. Due to its better adaptability to the

color statistics of input images and its ability to minimize quantization error

over multiple quantizer cells as a whole, the new color quantizer design

algorithm outperforms the existing algorithms for a large set of test images.

On the average, the mean-square quantization error of the new algorithm is

five times smaller than that of the traditional algorithms. Also, the quantized

images produced by the new algorithm seem to look better than those

produced by the traditional algorithms. The new algorithm is analyzed and

shown to be practical for the mean-square error measure. Indeed, for the

720 x 576 ISO test images, the new algorithm takes less than three minutes

on a Personal IRIS workstation. Furthermore, the algorithm works in all

color spaces and can be generalized to other error measures as well.
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