File: | mi/miarc.c |
Location: | line 2515, column 5 |
Description: | Value stored to 'y0' is never read |
1 | /*********************************************************** |
2 | |
3 | Copyright 1987, 1998 The Open Group |
4 | |
5 | Permission to use, copy, modify, distribute, and sell this software and its |
6 | documentation for any purpose is hereby granted without fee, provided that |
7 | the above copyright notice appear in all copies and that both that |
8 | copyright notice and this permission notice appear in supporting |
9 | documentation. |
10 | |
11 | The above copyright notice and this permission notice shall be included in |
12 | all copies or substantial portions of the Software. |
13 | |
14 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
15 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
16 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
17 | OPEN GROUP BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN |
18 | AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN |
19 | CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
20 | |
21 | Except as contained in this notice, the name of The Open Group shall not be |
22 | used in advertising or otherwise to promote the sale, use or other dealings |
23 | in this Software without prior written authorization from The Open Group. |
24 | |
25 | Copyright 1987 by Digital Equipment Corporation, Maynard, Massachusetts. |
26 | |
27 | All Rights Reserved |
28 | |
29 | Permission to use, copy, modify, and distribute this software and its |
30 | documentation for any purpose and without fee is hereby granted, |
31 | provided that the above copyright notice appear in all copies and that |
32 | both that copyright notice and this permission notice appear in |
33 | supporting documentation, and that the name of Digital not be |
34 | used in advertising or publicity pertaining to distribution of the |
35 | software without specific, written prior permission. |
36 | |
37 | DIGITAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING |
38 | ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL |
39 | DIGITAL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR |
40 | ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, |
41 | WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, |
42 | ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS |
43 | SOFTWARE. |
44 | |
45 | ******************************************************************/ |
46 | /* Author: Keith Packard and Bob Scheifler */ |
47 | /* Warning: this code is toxic, do not dally very long here. */ |
48 | |
49 | #ifdef HAVE_DIX_CONFIG_H1 |
50 | #include <dix-config.h> |
51 | #endif |
52 | |
53 | #include <math.h> |
54 | #include <X11/X.h> |
55 | #include <X11/Xprotostr.h> |
56 | #include "misc.h" |
57 | #include "gcstruct.h" |
58 | #include "scrnintstr.h" |
59 | #include "pixmapstr.h" |
60 | #include "windowstr.h" |
61 | #include "mifpoly.h" |
62 | #include "mi.h" |
63 | #include "mifillarc.h" |
64 | #include <X11/Xfuncproto.h> |
65 | |
66 | #define EPSILON0.000001 0.000001 |
67 | #define ISEQUAL(a,b)(fabs((a) - (b)) <= 0.000001) (fabs((a) - (b)) <= EPSILON0.000001) |
68 | #define UNEQUAL(a,b)(fabs((a) - (b)) > 0.000001) (fabs((a) - (b)) > EPSILON0.000001) |
69 | #define PTISEQUAL(a,b)((fabs((a.x) - (b.x)) <= 0.000001) && (fabs((a.y) - (b.y)) <= 0.000001)) (ISEQUAL(a.x,b.x)(fabs((a.x) - (b.x)) <= 0.000001) && ISEQUAL(a.y,b.y)(fabs((a.y) - (b.y)) <= 0.000001)) |
70 | #define SQSECANT108.856472512142 108.856472512142 /* 1/sin^2(11/2) - for 11o miter cutoff */ |
71 | |
72 | /* Point with sub-pixel positioning. */ |
73 | typedef struct _SppPoint { |
74 | double x, y; |
75 | } SppPointRec, *SppPointPtr; |
76 | |
77 | typedef struct _SppArc { |
78 | double x, y, width, height; |
79 | double angle1, angle2; |
80 | } SppArcRec, *SppArcPtr; |
81 | |
82 | static double miDsin(double a); |
83 | static double miDcos(double a); |
84 | static double miDasin(double v); |
85 | static double miDatan2(double dy, double dx); |
86 | |
87 | #ifndef HAVE_CBRT1 |
88 | static double |
89 | cbrt(double x) |
90 | { |
91 | if (x > 0.0) |
92 | return pow(x, 1.0 / 3.0); |
93 | else |
94 | return -pow(-x, 1.0 / 3.0); |
95 | } |
96 | #endif |
97 | |
98 | /* |
99 | * some interesting sematic interpretation of the protocol: |
100 | * |
101 | * Self intersecting arcs (i.e. those spanning 360 degrees) |
102 | * never join with other arcs, and are drawn without caps |
103 | * (unless on/off dashed, in which case each dash segment |
104 | * is capped, except when the last segment meets the |
105 | * first segment, when no caps are drawn) |
106 | * |
107 | * double dash arcs are drawn in two parts, first the |
108 | * odd dashes (drawn in background) then the even dashes |
109 | * (drawn in foreground). This means that overlapping |
110 | * sections of foreground/background are drawn twice, |
111 | * first in background then in foreground. The double-draw |
112 | * occurs even when the function uses the destination values |
113 | * (e.g. xor mode). This is the same way the wide-line |
114 | * code works and should be "fixed". |
115 | * |
116 | */ |
117 | |
118 | struct bound { |
119 | double min, max; |
120 | }; |
121 | |
122 | struct ibound { |
123 | int min, max; |
124 | }; |
125 | |
126 | #define boundedLe(value, bounds)((bounds).min <= (value) && (value) <= (bounds) .max)\ |
127 | ((bounds).min <= (value) && (value) <= (bounds).max) |
128 | |
129 | struct line { |
130 | double m, b; |
131 | int valid; |
132 | }; |
133 | |
134 | #define intersectLine(y,line)(line.m * (y) + line.b) (line.m * (y) + line.b) |
135 | |
136 | /* |
137 | * these are all y value bounds |
138 | */ |
139 | |
140 | struct arc_bound { |
141 | struct bound ellipse; |
142 | struct bound inner; |
143 | struct bound outer; |
144 | struct bound right; |
145 | struct bound left; |
146 | struct ibound inneri; |
147 | struct ibound outeri; |
148 | }; |
149 | |
150 | struct accelerators { |
151 | double tail_y; |
152 | double h2; |
153 | double w2; |
154 | double h4; |
155 | double w4; |
156 | double h2mw2; |
157 | double h2l; |
158 | double w2l; |
159 | double fromIntX; |
160 | double fromIntY; |
161 | struct line left, right; |
162 | int yorgu; |
163 | int yorgl; |
164 | int xorg; |
165 | }; |
166 | |
167 | struct arc_def { |
168 | double w, h, l; |
169 | double a0, a1; |
170 | }; |
171 | |
172 | #define todeg(xAngle)(((double) (xAngle)) / 64.0) (((double) (xAngle)) / 64.0) |
173 | |
174 | #define RIGHT_END0 0 |
175 | #define LEFT_END1 1 |
176 | |
177 | typedef struct _miArcJoin { |
178 | int arcIndex0, arcIndex1; |
179 | int phase0, phase1; |
180 | int end0, end1; |
181 | } miArcJoinRec, *miArcJoinPtr; |
182 | |
183 | typedef struct _miArcCap { |
184 | int arcIndex; |
185 | int end; |
186 | } miArcCapRec, *miArcCapPtr; |
187 | |
188 | typedef struct _miArcFace { |
189 | SppPointRec clock; |
190 | SppPointRec center; |
191 | SppPointRec counterClock; |
192 | } miArcFaceRec, *miArcFacePtr; |
193 | |
194 | typedef struct _miArcData { |
195 | xArc arc; |
196 | int render; /* non-zero means render after drawing */ |
197 | int join; /* related join */ |
198 | int cap; /* related cap */ |
199 | int selfJoin; /* final dash meets first dash */ |
200 | miArcFaceRec bounds[2]; |
201 | double x0, y0, x1, y1; |
202 | } miArcDataRec, *miArcDataPtr; |
203 | |
204 | /* |
205 | * This is an entire sequence of arcs, computed and categorized according |
206 | * to operation. miDashArcs generates either one or two of these. |
207 | */ |
208 | |
209 | typedef struct _miPolyArc { |
210 | int narcs; |
211 | miArcDataPtr arcs; |
212 | int ncaps; |
213 | miArcCapPtr caps; |
214 | int njoins; |
215 | miArcJoinPtr joins; |
216 | } miPolyArcRec, *miPolyArcPtr; |
217 | |
218 | static void fillSpans(DrawablePtr pDrawable, GCPtr pGC); |
219 | static void newFinalSpan(int y, int xmin, int xmax); |
220 | static void drawArc(xArc * tarc, int l, int a0, int a1, miArcFacePtr right, |
221 | miArcFacePtr left); |
222 | static void drawZeroArc(DrawablePtr pDraw, GCPtr pGC, xArc * tarc, int lw, |
223 | miArcFacePtr left, miArcFacePtr right); |
224 | static void miArcJoin(DrawablePtr pDraw, GCPtr pGC, miArcFacePtr pLeft, |
225 | miArcFacePtr pRight, int xOrgLeft, int yOrgLeft, |
226 | double xFtransLeft, double yFtransLeft, |
227 | int xOrgRight, int yOrgRight, |
228 | double xFtransRight, double yFtransRight); |
229 | static void miArcCap(DrawablePtr pDraw, GCPtr pGC, miArcFacePtr pFace, |
230 | int end, int xOrg, int yOrg, double xFtrans, |
231 | double yFtrans); |
232 | static void miRoundCap(DrawablePtr pDraw, GCPtr pGC, SppPointRec pCenter, |
233 | SppPointRec pEnd, SppPointRec pCorner, |
234 | SppPointRec pOtherCorner, int fLineEnd, |
235 | int xOrg, int yOrg, double xFtrans, double yFtrans); |
236 | static void miFreeArcs(miPolyArcPtr arcs, GCPtr pGC); |
237 | static miPolyArcPtr miComputeArcs(xArc * parcs, int narcs, GCPtr pGC); |
238 | static int miGetArcPts(SppArcPtr parc, int cpt, SppPointPtr * ppPts); |
239 | |
240 | #define CUBED_ROOT_21.2599210498948732038115849718451499938964 1.2599210498948732038115849718451499938964 |
241 | #define CUBED_ROOT_41.5874010519681993173435330390930175781250 1.5874010519681993173435330390930175781250 |
242 | |
243 | /* |
244 | * draw one segment of the arc using the arc spans generation routines |
245 | */ |
246 | |
247 | static void |
248 | miArcSegment(DrawablePtr pDraw, |
249 | GCPtr pGC, xArc tarc, miArcFacePtr right, miArcFacePtr left) |
250 | { |
251 | int l = pGC->lineWidth; |
252 | int a0, a1, startAngle, endAngle; |
253 | miArcFacePtr temp; |
254 | |
255 | if (!l) |
256 | l = 1; |
257 | |
258 | if (tarc.width == 0 || tarc.height == 0) { |
259 | drawZeroArc(pDraw, pGC, &tarc, l, left, right); |
260 | return; |
261 | } |
262 | |
263 | if (pGC->miTranslate) { |
264 | tarc.x += pDraw->x; |
265 | tarc.y += pDraw->y; |
266 | } |
267 | |
268 | a0 = tarc.angle1; |
269 | a1 = tarc.angle2; |
270 | if (a1 > FULLCIRCLE(360 * 64)) |
271 | a1 = FULLCIRCLE(360 * 64); |
272 | else if (a1 < -FULLCIRCLE(360 * 64)) |
273 | a1 = -FULLCIRCLE(360 * 64); |
274 | if (a1 < 0) { |
275 | startAngle = a0 + a1; |
276 | endAngle = a0; |
277 | temp = right; |
278 | right = left; |
279 | left = temp; |
280 | } |
281 | else { |
282 | startAngle = a0; |
283 | endAngle = a0 + a1; |
284 | } |
285 | /* |
286 | * bounds check the two angles |
287 | */ |
288 | if (startAngle < 0) |
289 | startAngle = FULLCIRCLE(360 * 64) - (-startAngle) % FULLCIRCLE(360 * 64); |
290 | if (startAngle >= FULLCIRCLE(360 * 64)) |
291 | startAngle = startAngle % FULLCIRCLE(360 * 64); |
292 | if (endAngle < 0) |
293 | endAngle = FULLCIRCLE(360 * 64) - (-endAngle) % FULLCIRCLE(360 * 64); |
294 | if (endAngle > FULLCIRCLE(360 * 64)) |
295 | endAngle = (endAngle - 1) % FULLCIRCLE(360 * 64) + 1; |
296 | if ((startAngle == endAngle) && a1) { |
297 | startAngle = 0; |
298 | endAngle = FULLCIRCLE(360 * 64); |
299 | } |
300 | |
301 | drawArc(&tarc, l, startAngle, endAngle, right, left); |
302 | } |
303 | |
304 | /* |
305 | |
306 | Three equations combine to describe the boundaries of the arc |
307 | |
308 | x^2/w^2 + y^2/h^2 = 1 ellipse itself |
309 | (X-x)^2 + (Y-y)^2 = r^2 circle at (x, y) on the ellipse |
310 | (Y-y) = (X-x)*w^2*y/(h^2*x) normal at (x, y) on the ellipse |
311 | |
312 | These lead to a quartic relating Y and y |
313 | |
314 | y^4 - (2Y)y^3 + (Y^2 + (h^4 - w^2*r^2)/(w^2 - h^2))y^2 |
315 | - (2Y*h^4/(w^2 - h^2))y + (Y^2*h^4)/(w^2 - h^2) = 0 |
316 | |
317 | The reducible cubic obtained from this quartic is |
318 | |
319 | z^3 - (3N)z^2 - 2V = 0 |
320 | |
321 | where |
322 | |
323 | N = (Y^2 + (h^4 - w^2*r^2/(w^2 - h^2)))/6 |
324 | V = w^2*r^2*Y^2*h^4/(4 *(w^2 - h^2)^2) |
325 | |
326 | Let |
327 | |
328 | t = z - N |
329 | p = -N^2 |
330 | q = -N^3 - V |
331 | |
332 | Then we get |
333 | |
334 | t^3 + 3pt + 2q = 0 |
335 | |
336 | The discriminant of this cubic is |
337 | |
338 | D = q^2 + p^3 |
339 | |
340 | When D > 0, a real root is obtained as |
341 | |
342 | z = N + cbrt(-q+sqrt(D)) + cbrt(-q-sqrt(D)) |
343 | |
344 | When D < 0, a real root is obtained as |
345 | |
346 | z = N - 2m*cos(acos(-q/m^3)/3) |
347 | |
348 | where |
349 | |
350 | m = sqrt(|p|) * sign(q) |
351 | |
352 | Given a real root Z of the cubic, the roots of the quartic are the roots |
353 | of the two quadratics |
354 | |
355 | y^2 + ((b+A)/2)y + (Z + (bZ - d)/A) = 0 |
356 | |
357 | where |
358 | |
359 | A = +/- sqrt(8Z + b^2 - 4c) |
360 | b, c, d are the cubic, quadratic, and linear coefficients of the quartic |
361 | |
362 | Some experimentation is then required to determine which solutions |
363 | correspond to the inner and outer boundaries. |
364 | |
365 | */ |
366 | |
367 | typedef struct { |
368 | short lx, lw, rx, rw; |
369 | } miArcSpan; |
370 | |
371 | typedef struct { |
372 | miArcSpan *spans; |
373 | int count1, count2, k; |
374 | char top, bot, hole; |
375 | } miArcSpanData; |
376 | |
377 | static void drawQuadrant(struct arc_def *def, struct accelerators *acc, |
378 | int a0, int a1, int mask, miArcFacePtr right, |
379 | miArcFacePtr left, miArcSpanData * spdata); |
380 | |
381 | static void |
382 | miComputeCircleSpans(int lw, xArc * parc, miArcSpanData * spdata) |
383 | { |
384 | miArcSpan *span; |
385 | int doinner; |
386 | int x, y, e; |
387 | int xk, yk, xm, ym, dx, dy; |
388 | int slw, inslw; |
389 | int inx = 0, iny, ine = 0; |
390 | int inxk = 0, inyk = 0, inxm = 0, inym = 0; |
391 | |
392 | doinner = -lw; |
393 | slw = parc->width - doinner; |
394 | y = parc->height >> 1; |
395 | dy = parc->height & 1; |
396 | dx = 1 - dy; |
397 | MIWIDEARCSETUP(x, y, dy, slw, e, xk, xm, yk, ym)x = 0; y = slw >> 1; yk = y << 3; xm = 8; ym = 8; if (dy) { xk = 0; if (slw & 1) e = -1; else e = -(y << 2) - 2; } else { y++; yk += 4; xk = -4; if (slw & 1) e = -(y << 2) - 3; else e = - (y << 3); }; |
398 | inslw = parc->width + doinner; |
399 | if (inslw > 0) { |
400 | spdata->hole = spdata->top; |
401 | MIWIDEARCSETUP(inx, iny, dy, inslw, ine, inxk, inxm, inyk, inym)inx = 0; iny = inslw >> 1; inyk = iny << 3; inxm = 8; inym = 8; if (dy) { inxk = 0; if (inslw & 1) ine = -1 ; else ine = -(iny << 2) - 2; } else { iny++; inyk += 4 ; inxk = -4; if (inslw & 1) ine = -(iny << 2) - 3; else ine = - (iny << 3); }; |
402 | } |
403 | else { |
404 | spdata->hole = FALSE0; |
405 | doinner = -y; |
406 | } |
407 | spdata->count1 = -doinner - spdata->top; |
408 | spdata->count2 = y + doinner; |
409 | span = spdata->spans; |
410 | while (y) { |
411 | MIFILLARCSTEP(slw)e += yk; while (e >= 0) { x++; xk -= xm; e += xk; } y--; yk -= ym; slw = (x << 1) + dx; if ((e == xk) && ( slw > 1)) slw--; |
412 | span->lx = dy - x; |
413 | if (++doinner <= 0) { |
414 | span->lw = slw; |
415 | span->rx = 0; |
416 | span->rw = span->lx + slw; |
417 | } |
418 | else { |
419 | MIFILLINARCSTEP(inslw)ine += inyk; while (ine >= 0) { inx++; inxk -= inxm; ine += inxk; } iny--; inyk -= inym; inslw = (inx << 1) + dx; if ((ine == inxk) && (inslw > 1)) inslw--; |
420 | span->lw = x - inx; |
421 | span->rx = dy - inx + inslw; |
422 | span->rw = inx - x + slw - inslw; |
423 | } |
424 | span++; |
425 | } |
426 | if (spdata->bot) { |
427 | if (spdata->count2) |
428 | spdata->count2--; |
429 | else { |
430 | if (lw > (int) parc->height) |
431 | span[-1].rx = span[-1].rw = -((lw - (int) parc->height) >> 1); |
432 | else |
433 | span[-1].rw = 0; |
434 | spdata->count1--; |
435 | } |
436 | } |
437 | } |
438 | |
439 | static void |
440 | miComputeEllipseSpans(int lw, xArc * parc, miArcSpanData * spdata) |
441 | { |
442 | miArcSpan *span; |
443 | double w, h, r, xorg; |
444 | double Hs, Hf, WH, K, Vk, Nk, Fk, Vr, N, Nc, Z, rs; |
445 | double A, T, b, d, x, y, t, inx, outx = 0.0, hepp, hepm; |
446 | int flip, solution; |
447 | |
448 | w = (double) parc->width / 2.0; |
449 | h = (double) parc->height / 2.0; |
450 | r = lw / 2.0; |
451 | rs = r * r; |
452 | Hs = h * h; |
453 | WH = w * w - Hs; |
454 | Nk = w * r; |
455 | Vk = (Nk * Hs) / (WH + WH); |
456 | Hf = Hs * Hs; |
457 | Nk = (Hf - Nk * Nk) / WH; |
458 | Fk = Hf / WH; |
459 | hepp = h + EPSILON0.000001; |
460 | hepm = h - EPSILON0.000001; |
461 | K = h + ((lw - 1) >> 1); |
462 | span = spdata->spans; |
463 | if (parc->width & 1) |
464 | xorg = .5; |
465 | else |
466 | xorg = 0.0; |
467 | if (spdata->top) { |
468 | span->lx = 0; |
469 | span->lw = 1; |
470 | span++; |
471 | } |
472 | spdata->count1 = 0; |
473 | spdata->count2 = 0; |
474 | spdata->hole = (spdata->top && |
475 | (int) parc->height * lw <= (int) (parc->width * parc->width) |
476 | && lw < (int) parc->height); |
477 | for (; K > 0.0; K -= 1.0) { |
478 | N = (K * K + Nk) / 6.0; |
479 | Nc = N * N * N; |
480 | Vr = Vk * K; |
481 | t = Nc + Vr * Vr; |
482 | d = Nc + t; |
483 | if (d < 0.0) { |
484 | d = Nc; |
485 | b = N; |
486 | if ((b < 0.0) == (t < 0.0)) { |
487 | b = -b; |
488 | d = -d; |
489 | } |
490 | Z = N - 2.0 * b * cos(acos(-t / d) / 3.0); |
491 | if ((Z < 0.0) == (Vr < 0.0)) |
492 | flip = 2; |
493 | else |
494 | flip = 1; |
495 | } |
496 | else { |
497 | d = Vr * sqrt(d); |
498 | Z = N + cbrt(t + d) + cbrt(t - d); |
499 | flip = 0; |
500 | } |
501 | A = sqrt((Z + Z) - Nk); |
502 | T = (Fk - Z) * K / A; |
503 | inx = 0.0; |
504 | solution = FALSE0; |
505 | b = -A + K; |
506 | d = b * b - 4 * (Z + T); |
507 | if (d >= 0) { |
508 | d = sqrt(d); |
509 | y = (b + d) / 2; |
510 | if ((y >= 0.0) && (y < hepp)) { |
511 | solution = TRUE1; |
512 | if (y > hepm) |
513 | y = h; |
514 | t = y / h; |
515 | x = w * sqrt(1 - (t * t)); |
516 | t = K - y; |
517 | if (rs - (t * t) >= 0) |
518 | t = sqrt(rs - (t * t)); |
519 | else |
520 | t = 0; |
521 | if (flip == 2) |
522 | inx = x - t; |
523 | else |
524 | outx = x + t; |
525 | } |
526 | } |
527 | b = A + K; |
528 | d = b * b - 4 * (Z - T); |
529 | /* Because of the large magnitudes involved, we lose enough precision |
530 | * that sometimes we end up with a negative value near the axis, when |
531 | * it should be positive. This is a workaround. |
532 | */ |
533 | if (d < 0 && !solution) |
534 | d = 0.0; |
535 | if (d >= 0) { |
536 | d = sqrt(d); |
537 | y = (b + d) / 2; |
538 | if (y < hepp) { |
539 | if (y > hepm) |
540 | y = h; |
541 | t = y / h; |
542 | x = w * sqrt(1 - (t * t)); |
543 | t = K - y; |
544 | if (rs - (t * t) >= 0) |
545 | inx = x - sqrt(rs - (t * t)); |
546 | else |
547 | inx = x; |
548 | } |
549 | y = (b - d) / 2; |
550 | if (y >= 0.0) { |
551 | if (y > hepm) |
552 | y = h; |
553 | t = y / h; |
554 | x = w * sqrt(1 - (t * t)); |
555 | t = K - y; |
556 | if (rs - (t * t) >= 0) |
557 | t = sqrt(rs - (t * t)); |
558 | else |
559 | t = 0; |
560 | if (flip == 1) |
561 | inx = x - t; |
562 | else |
563 | outx = x + t; |
564 | } |
565 | } |
566 | span->lx = ICEIL(xorg - outx); |
567 | if (inx <= 0.0) { |
568 | spdata->count1++; |
569 | span->lw = ICEIL(xorg + outx) - span->lx; |
570 | span->rx = ICEIL(xorg + inx); |
571 | span->rw = -ICEIL(xorg - inx); |
572 | } |
573 | else { |
574 | spdata->count2++; |
575 | span->lw = ICEIL(xorg - inx) - span->lx; |
576 | span->rx = ICEIL(xorg + inx); |
577 | span->rw = ICEIL(xorg + outx) - span->rx; |
578 | } |
579 | span++; |
580 | } |
581 | if (spdata->bot) { |
582 | outx = w + r; |
583 | if (r >= h && r <= w) |
584 | inx = 0.0; |
585 | else if (Nk < 0.0 && -Nk < Hs) { |
586 | inx = w * sqrt(1 + Nk / Hs) - sqrt(rs + Nk); |
587 | if (inx > w - r) |
588 | inx = w - r; |
589 | } |
590 | else |
591 | inx = w - r; |
592 | span->lx = ICEIL(xorg - outx); |
593 | if (inx <= 0.0) { |
594 | span->lw = ICEIL(xorg + outx) - span->lx; |
595 | span->rx = ICEIL(xorg + inx); |
596 | span->rw = -ICEIL(xorg - inx); |
597 | } |
598 | else { |
599 | span->lw = ICEIL(xorg - inx) - span->lx; |
600 | span->rx = ICEIL(xorg + inx); |
601 | span->rw = ICEIL(xorg + outx) - span->rx; |
602 | } |
603 | } |
604 | if (spdata->hole) { |
605 | span = &spdata->spans[spdata->count1]; |
606 | span->lw = -span->lx; |
607 | span->rx = 1; |
608 | span->rw = span->lw; |
609 | spdata->count1--; |
610 | spdata->count2++; |
611 | } |
612 | } |
613 | |
614 | static double |
615 | tailX(double K, |
616 | struct arc_def *def, struct arc_bound *bounds, struct accelerators *acc) |
617 | { |
618 | double w, h, r; |
619 | double Hs, Hf, WH, Vk, Nk, Fk, Vr, N, Nc, Z, rs; |
620 | double A, T, b, d, x, y, t, hepp, hepm; |
621 | int flip, solution; |
622 | double xs[2]; |
623 | double *xp; |
624 | |
625 | w = def->w; |
626 | h = def->h; |
627 | r = def->l; |
628 | rs = r * r; |
629 | Hs = acc->h2; |
630 | WH = -acc->h2mw2; |
631 | Nk = def->w * r; |
632 | Vk = (Nk * Hs) / (WH + WH); |
633 | Hf = acc->h4; |
634 | Nk = (Hf - Nk * Nk) / WH; |
635 | if (K == 0.0) { |
636 | if (Nk < 0.0 && -Nk < Hs) { |
637 | xs[0] = w * sqrt(1 + Nk / Hs) - sqrt(rs + Nk); |
638 | xs[1] = w - r; |
639 | if (acc->left.valid && boundedLe(K, bounds->left)((bounds->left).min <= (K) && (K) <= (bounds ->left).max) && |
640 | !boundedLe(K, bounds->outer)((bounds->outer).min <= (K) && (K) <= (bounds ->outer).max) && xs[0] >= 0.0 && xs[1] >= 0.0) |
641 | return xs[1]; |
642 | if (acc->right.valid && boundedLe(K, bounds->right)((bounds->right).min <= (K) && (K) <= (bounds ->right).max) && |
643 | !boundedLe(K, bounds->inner)((bounds->inner).min <= (K) && (K) <= (bounds ->inner).max) && xs[0] <= 0.0 && xs[1] <= 0.0) |
644 | return xs[1]; |
645 | return xs[0]; |
646 | } |
647 | return w - r; |
648 | } |
649 | Fk = Hf / WH; |
650 | hepp = h + EPSILON0.000001; |
651 | hepm = h - EPSILON0.000001; |
652 | N = (K * K + Nk) / 6.0; |
653 | Nc = N * N * N; |
654 | Vr = Vk * K; |
655 | xp = xs; |
656 | xs[0] = 0.0; |
657 | t = Nc + Vr * Vr; |
658 | d = Nc + t; |
659 | if (d < 0.0) { |
660 | d = Nc; |
661 | b = N; |
662 | if ((b < 0.0) == (t < 0.0)) { |
663 | b = -b; |
664 | d = -d; |
665 | } |
666 | Z = N - 2.0 * b * cos(acos(-t / d) / 3.0); |
667 | if ((Z < 0.0) == (Vr < 0.0)) |
668 | flip = 2; |
669 | else |
670 | flip = 1; |
671 | } |
672 | else { |
673 | d = Vr * sqrt(d); |
674 | Z = N + cbrt(t + d) + cbrt(t - d); |
675 | flip = 0; |
676 | } |
677 | A = sqrt((Z + Z) - Nk); |
678 | T = (Fk - Z) * K / A; |
679 | solution = FALSE0; |
680 | b = -A + K; |
681 | d = b * b - 4 * (Z + T); |
682 | if (d >= 0 && flip == 2) { |
683 | d = sqrt(d); |
684 | y = (b + d) / 2; |
685 | if ((y >= 0.0) && (y < hepp)) { |
686 | solution = TRUE1; |
687 | if (y > hepm) |
688 | y = h; |
689 | t = y / h; |
690 | x = w * sqrt(1 - (t * t)); |
691 | t = K - y; |
692 | if (rs - (t * t) >= 0) |
693 | t = sqrt(rs - (t * t)); |
694 | else |
695 | t = 0; |
696 | *xp++ = x - t; |
697 | } |
698 | } |
699 | b = A + K; |
700 | d = b * b - 4 * (Z - T); |
701 | /* Because of the large magnitudes involved, we lose enough precision |
702 | * that sometimes we end up with a negative value near the axis, when |
703 | * it should be positive. This is a workaround. |
704 | */ |
705 | if (d < 0 && !solution) |
706 | d = 0.0; |
707 | if (d >= 0) { |
708 | d = sqrt(d); |
709 | y = (b + d) / 2; |
710 | if (y < hepp) { |
711 | if (y > hepm) |
712 | y = h; |
713 | t = y / h; |
714 | x = w * sqrt(1 - (t * t)); |
715 | t = K - y; |
716 | if (rs - (t * t) >= 0) |
717 | *xp++ = x - sqrt(rs - (t * t)); |
718 | else |
719 | *xp++ = x; |
720 | } |
721 | y = (b - d) / 2; |
722 | if (y >= 0.0 && flip == 1) { |
723 | if (y > hepm) |
724 | y = h; |
725 | t = y / h; |
726 | x = w * sqrt(1 - (t * t)); |
727 | t = K - y; |
728 | if (rs - (t * t) >= 0) |
729 | t = sqrt(rs - (t * t)); |
730 | else |
731 | t = 0; |
732 | *xp++ = x - t; |
733 | } |
734 | } |
735 | if (xp > &xs[1]) { |
736 | if (acc->left.valid && boundedLe(K, bounds->left)((bounds->left).min <= (K) && (K) <= (bounds ->left).max) && |
737 | !boundedLe(K, bounds->outer)((bounds->outer).min <= (K) && (K) <= (bounds ->outer).max) && xs[0] >= 0.0 && xs[1] >= 0.0) |
738 | return xs[1]; |
739 | if (acc->right.valid && boundedLe(K, bounds->right)((bounds->right).min <= (K) && (K) <= (bounds ->right).max) && |
740 | !boundedLe(K, bounds->inner)((bounds->inner).min <= (K) && (K) <= (bounds ->inner).max) && xs[0] <= 0.0 && xs[1] <= 0.0) |
741 | return xs[1]; |
742 | } |
743 | return xs[0]; |
744 | } |
745 | |
746 | static miArcSpanData * |
747 | miComputeWideEllipse(int lw, xArc * parc) |
748 | { |
749 | miArcSpanData *spdata = NULL((void*)0); |
750 | int k; |
751 | |
752 | if (!lw) |
753 | lw = 1; |
754 | k = (parc->height >> 1) + ((lw - 1) >> 1); |
755 | spdata = malloc(sizeof(miArcSpanData) + sizeof(miArcSpan) * (k + 2)); |
756 | if (!spdata) |
757 | return NULL((void*)0); |
758 | spdata->spans = (miArcSpan *) (spdata + 1); |
759 | spdata->k = k; |
760 | spdata->top = !(lw & 1) && !(parc->width & 1); |
761 | spdata->bot = !(parc->height & 1); |
762 | if (parc->width == parc->height) |
763 | miComputeCircleSpans(lw, parc, spdata); |
764 | else |
765 | miComputeEllipseSpans(lw, parc, spdata); |
766 | return spdata; |
767 | } |
768 | |
769 | static void |
770 | miFillWideEllipse(DrawablePtr pDraw, GCPtr pGC, xArc * parc) |
771 | { |
772 | DDXPointPtr points; |
773 | DDXPointPtr pts; |
774 | int *widths; |
775 | int *wids; |
776 | miArcSpanData *spdata; |
777 | miArcSpan *span; |
778 | int xorg, yorgu, yorgl; |
779 | int n; |
780 | |
781 | yorgu = parc->height + pGC->lineWidth; |
782 | n = (sizeof(int) * 2) * yorgu; |
783 | widths = malloc(n + (sizeof(DDXPointRec) * 2) * yorgu); |
784 | if (!widths) |
785 | return; |
786 | points = (DDXPointPtr) ((char *) widths + n); |
787 | spdata = miComputeWideEllipse((int) pGC->lineWidth, parc); |
788 | if (!spdata) { |
789 | free(widths); |
790 | return; |
791 | } |
792 | pts = points; |
793 | wids = widths; |
794 | span = spdata->spans; |
795 | xorg = parc->x + (parc->width >> 1); |
796 | yorgu = parc->y + (parc->height >> 1); |
797 | yorgl = yorgu + (parc->height & 1); |
798 | if (pGC->miTranslate) { |
799 | xorg += pDraw->x; |
800 | yorgu += pDraw->y; |
801 | yorgl += pDraw->y; |
802 | } |
803 | yorgu -= spdata->k; |
804 | yorgl += spdata->k; |
805 | if (spdata->top) { |
806 | pts->x = xorg; |
807 | pts->y = yorgu - 1; |
808 | pts++; |
809 | *wids++ = 1; |
810 | span++; |
811 | } |
812 | for (n = spdata->count1; --n >= 0;) { |
813 | pts[0].x = xorg + span->lx; |
814 | pts[0].y = yorgu; |
815 | wids[0] = span->lw; |
816 | pts[1].x = pts[0].x; |
817 | pts[1].y = yorgl; |
818 | wids[1] = wids[0]; |
819 | yorgu++; |
820 | yorgl--; |
821 | pts += 2; |
822 | wids += 2; |
823 | span++; |
824 | } |
825 | if (spdata->hole) { |
826 | pts[0].x = xorg; |
827 | pts[0].y = yorgl; |
828 | wids[0] = 1; |
829 | pts++; |
830 | wids++; |
831 | } |
832 | for (n = spdata->count2; --n >= 0;) { |
833 | pts[0].x = xorg + span->lx; |
834 | pts[0].y = yorgu; |
835 | wids[0] = span->lw; |
836 | pts[1].x = xorg + span->rx; |
837 | pts[1].y = pts[0].y; |
838 | wids[1] = span->rw; |
839 | pts[2].x = pts[0].x; |
840 | pts[2].y = yorgl; |
841 | wids[2] = wids[0]; |
842 | pts[3].x = pts[1].x; |
843 | pts[3].y = pts[2].y; |
844 | wids[3] = wids[1]; |
845 | yorgu++; |
846 | yorgl--; |
847 | pts += 4; |
848 | wids += 4; |
849 | span++; |
850 | } |
851 | if (spdata->bot) { |
852 | if (span->rw <= 0) { |
853 | pts[0].x = xorg + span->lx; |
854 | pts[0].y = yorgu; |
855 | wids[0] = span->lw; |
856 | pts++; |
857 | wids++; |
858 | } |
859 | else { |
860 | pts[0].x = xorg + span->lx; |
861 | pts[0].y = yorgu; |
862 | wids[0] = span->lw; |
863 | pts[1].x = xorg + span->rx; |
864 | pts[1].y = pts[0].y; |
865 | wids[1] = span->rw; |
866 | pts += 2; |
867 | wids += 2; |
868 | } |
869 | } |
870 | free(spdata); |
871 | (*pGC->ops->FillSpans) (pDraw, pGC, pts - points, points, widths, FALSE0); |
872 | |
873 | free(widths); |
874 | } |
875 | |
876 | /* |
877 | * miPolyArc strategy: |
878 | * |
879 | * If arc is zero width and solid, we don't have to worry about the rasterop |
880 | * or join styles. For wide solid circles, we use a fast integer algorithm. |
881 | * For wide solid ellipses, we use special case floating point code. |
882 | * Otherwise, we set up pDrawTo and pGCTo according to the rasterop, then |
883 | * draw using pGCTo and pDrawTo. If the raster-op was "tricky," that is, |
884 | * if it involves the destination, then we use PushPixels to move the bits |
885 | * from the scratch drawable to pDraw. (See the wide line code for a |
886 | * fuller explanation of this.) |
887 | */ |
888 | |
889 | void |
890 | miWideArc(DrawablePtr pDraw, GCPtr pGC, int narcs, xArc * parcs) |
891 | { |
892 | int i; |
893 | xArc *parc; |
894 | int xMin, xMax, yMin, yMax; |
895 | int pixmapWidth = 0, pixmapHeight = 0; |
896 | int xOrg = 0, yOrg = 0; |
897 | int width; |
898 | Bool fTricky; |
899 | DrawablePtr pDrawTo; |
900 | CARD32 fg, bg; |
901 | GCPtr pGCTo; |
902 | miPolyArcPtr polyArcs; |
903 | int cap[2], join[2]; |
904 | int iphase; |
905 | int halfWidth; |
906 | |
907 | width = pGC->lineWidth; |
908 | if (width == 0 && pGC->lineStyle == LineSolid0) { |
909 | for (i = narcs, parc = parcs; --i >= 0; parc++) |
910 | miArcSegment(pDraw, pGC, *parc, (miArcFacePtr) 0, (miArcFacePtr) 0); |
911 | fillSpans(pDraw, pGC); |
912 | } |
913 | else { |
914 | if ((pGC->lineStyle == LineSolid0) && narcs) { |
915 | while (parcs->width && parcs->height && |
916 | (parcs->angle2 >= FULLCIRCLE(360 * 64) || |
917 | parcs->angle2 <= -FULLCIRCLE(360 * 64))) { |
918 | miFillWideEllipse(pDraw, pGC, parcs); |
919 | if (!--narcs) |
920 | return; |
921 | parcs++; |
922 | } |
923 | } |
924 | |
925 | /* Set up pDrawTo and pGCTo based on the rasterop */ |
926 | switch (pGC->alu) { |
927 | case GXclear0x0: /* 0 */ |
928 | case GXcopy0x3: /* src */ |
929 | case GXcopyInverted0xc: /* NOT src */ |
930 | case GXset0xf: /* 1 */ |
931 | fTricky = FALSE0; |
932 | pDrawTo = pDraw; |
933 | pGCTo = pGC; |
934 | break; |
935 | default: |
936 | fTricky = TRUE1; |
937 | |
938 | /* find bounding box around arcs */ |
939 | xMin = yMin = MAXSHORT32767; |
940 | xMax = yMax = MINSHORT(-32767 -1); |
941 | |
942 | for (i = narcs, parc = parcs; --i >= 0; parc++) { |
943 | xMin = min(xMin, parc->x)(((xMin) < (parc->x)) ? (xMin) : (parc->x)); |
944 | yMin = min(yMin, parc->y)(((yMin) < (parc->y)) ? (yMin) : (parc->y)); |
945 | xMax = max(xMax, (parc->x + (int) parc->width))(((xMax) > ((parc->x + (int) parc->width))) ? (xMax) : ((parc->x + (int) parc->width))); |
946 | yMax = max(yMax, (parc->y + (int) parc->height))(((yMax) > ((parc->y + (int) parc->height))) ? (yMax ) : ((parc->y + (int) parc->height))); |
947 | } |
948 | |
949 | /* expand box to deal with line widths */ |
950 | halfWidth = (width + 1) / 2; |
951 | xMin -= halfWidth; |
952 | yMin -= halfWidth; |
953 | xMax += halfWidth; |
954 | yMax += halfWidth; |
955 | |
956 | /* compute pixmap size; limit it to size of drawable */ |
957 | xOrg = max(xMin, 0)(((xMin) > (0)) ? (xMin) : (0)); |
958 | yOrg = max(yMin, 0)(((yMin) > (0)) ? (yMin) : (0)); |
959 | pixmapWidth = min(xMax, pDraw->width)(((xMax) < (pDraw->width)) ? (xMax) : (pDraw->width) ) - xOrg; |
960 | pixmapHeight = min(yMax, pDraw->height)(((yMax) < (pDraw->height)) ? (yMax) : (pDraw->height )) - yOrg; |
961 | |
962 | /* if nothing left, return */ |
963 | if ((pixmapWidth <= 0) || (pixmapHeight <= 0)) |
964 | return; |
965 | |
966 | for (i = narcs, parc = parcs; --i >= 0; parc++) { |
967 | parc->x -= xOrg; |
968 | parc->y -= yOrg; |
969 | } |
970 | if (pGC->miTranslate) { |
971 | xOrg += pDraw->x; |
972 | yOrg += pDraw->y; |
973 | } |
974 | |
975 | /* set up scratch GC */ |
976 | |
977 | pGCTo = GetScratchGC(1, pDraw->pScreen); |
978 | if (!pGCTo) |
979 | return; |
980 | { |
981 | ChangeGCVal gcvals[6]; |
982 | |
983 | gcvals[0].val = GXcopy0x3; |
984 | gcvals[1].val = 1; |
985 | gcvals[2].val = 0; |
986 | gcvals[3].val = pGC->lineWidth; |
987 | gcvals[4].val = pGC->capStyle; |
988 | gcvals[5].val = pGC->joinStyle; |
989 | ChangeGC(NullClient((ClientPtr) 0), pGCTo, GCFunction(1L<<0) | |
990 | GCForeground(1L<<2) | GCBackground(1L<<3) | GCLineWidth(1L<<4) | |
991 | GCCapStyle(1L<<6) | GCJoinStyle(1L<<7), gcvals); |
992 | } |
993 | |
994 | /* allocate a 1 bit deep pixmap of the appropriate size, and |
995 | * validate it */ |
996 | pDrawTo = (DrawablePtr) (*pDraw->pScreen->CreatePixmap) |
997 | (pDraw->pScreen, pixmapWidth, pixmapHeight, 1, |
998 | CREATE_PIXMAP_USAGE_SCRATCH1); |
999 | if (!pDrawTo) { |
1000 | FreeScratchGC(pGCTo); |
1001 | return; |
1002 | } |
1003 | ValidateGC(pDrawTo, pGCTo); |
1004 | miClearDrawable(pDrawTo, pGCTo); |
1005 | } |
1006 | |
1007 | fg = pGC->fgPixel; |
1008 | bg = pGC->bgPixel; |
1009 | if ((pGC->fillStyle == FillTiled1) || |
1010 | (pGC->fillStyle == FillOpaqueStippled3)) |
1011 | bg = fg; /* the protocol sez these don't cause color changes */ |
1012 | |
1013 | polyArcs = miComputeArcs(parcs, narcs, pGC); |
1014 | |
1015 | if (!polyArcs) { |
1016 | if (fTricky) { |
1017 | (*pDraw->pScreen->DestroyPixmap) ((PixmapPtr) pDrawTo); |
1018 | FreeScratchGC(pGCTo); |
1019 | } |
1020 | return; |
1021 | } |
1022 | |
1023 | cap[0] = cap[1] = 0; |
1024 | join[0] = join[1] = 0; |
1025 | for (iphase = ((pGC->lineStyle == LineDoubleDash2) ? 1 : 0); |
1026 | iphase >= 0; iphase--) { |
1027 | ChangeGCVal gcval; |
1028 | |
1029 | if (iphase == 1) { |
1030 | gcval.val = bg; |
1031 | ChangeGC(NullClient((ClientPtr) 0), pGC, GCForeground(1L<<2), &gcval); |
1032 | ValidateGC(pDraw, pGC); |
1033 | } |
1034 | else if (pGC->lineStyle == LineDoubleDash2) { |
1035 | gcval.val = fg; |
1036 | ChangeGC(NullClient((ClientPtr) 0), pGC, GCForeground(1L<<2), &gcval); |
1037 | ValidateGC(pDraw, pGC); |
1038 | } |
1039 | for (i = 0; i < polyArcs[iphase].narcs; i++) { |
1040 | miArcDataPtr arcData; |
1041 | |
1042 | arcData = &polyArcs[iphase].arcs[i]; |
1043 | miArcSegment(pDrawTo, pGCTo, arcData->arc, |
1044 | &arcData->bounds[RIGHT_END0], |
1045 | &arcData->bounds[LEFT_END1]); |
1046 | if (polyArcs[iphase].arcs[i].render) { |
1047 | fillSpans(pDrawTo, pGCTo); |
1048 | /* |
1049 | * don't cap self-joining arcs |
1050 | */ |
1051 | if (polyArcs[iphase].arcs[i].selfJoin && |
1052 | cap[iphase] < polyArcs[iphase].arcs[i].cap) |
1053 | cap[iphase]++; |
1054 | while (cap[iphase] < polyArcs[iphase].arcs[i].cap) { |
1055 | int arcIndex, end; |
1056 | miArcDataPtr arcData0; |
1057 | |
1058 | arcIndex = polyArcs[iphase].caps[cap[iphase]].arcIndex; |
1059 | end = polyArcs[iphase].caps[cap[iphase]].end; |
1060 | arcData0 = &polyArcs[iphase].arcs[arcIndex]; |
1061 | miArcCap(pDrawTo, pGCTo, |
1062 | &arcData0->bounds[end], end, |
1063 | arcData0->arc.x, arcData0->arc.y, |
1064 | (double) arcData0->arc.width / 2.0, |
1065 | (double) arcData0->arc.height / 2.0); |
1066 | ++cap[iphase]; |
1067 | } |
1068 | while (join[iphase] < polyArcs[iphase].arcs[i].join) { |
1069 | int arcIndex0, arcIndex1, end0, end1; |
1070 | int phase0, phase1; |
1071 | miArcDataPtr arcData0, arcData1; |
1072 | miArcJoinPtr joinp; |
1073 | |
1074 | joinp = &polyArcs[iphase].joins[join[iphase]]; |
1075 | arcIndex0 = joinp->arcIndex0; |
1076 | end0 = joinp->end0; |
1077 | arcIndex1 = joinp->arcIndex1; |
1078 | end1 = joinp->end1; |
1079 | phase0 = joinp->phase0; |
1080 | phase1 = joinp->phase1; |
1081 | arcData0 = &polyArcs[phase0].arcs[arcIndex0]; |
1082 | arcData1 = &polyArcs[phase1].arcs[arcIndex1]; |
1083 | miArcJoin(pDrawTo, pGCTo, |
1084 | &arcData0->bounds[end0], |
1085 | &arcData1->bounds[end1], |
1086 | arcData0->arc.x, arcData0->arc.y, |
1087 | (double) arcData0->arc.width / 2.0, |
1088 | (double) arcData0->arc.height / 2.0, |
1089 | arcData1->arc.x, arcData1->arc.y, |
1090 | (double) arcData1->arc.width / 2.0, |
1091 | (double) arcData1->arc.height / 2.0); |
1092 | ++join[iphase]; |
1093 | } |
1094 | if (fTricky) { |
1095 | if (pGC->serialNumber != pDraw->serialNumber) |
1096 | ValidateGC(pDraw, pGC); |
1097 | (*pGC->ops->PushPixels) (pGC, (PixmapPtr) pDrawTo, |
1098 | pDraw, pixmapWidth, |
1099 | pixmapHeight, xOrg, yOrg); |
1100 | miClearDrawable((DrawablePtr) pDrawTo, pGCTo); |
1101 | } |
1102 | } |
1103 | } |
1104 | } |
1105 | miFreeArcs(polyArcs, pGC); |
1106 | |
1107 | if (fTricky) { |
1108 | (*pGCTo->pScreen->DestroyPixmap) ((PixmapPtr) pDrawTo); |
1109 | FreeScratchGC(pGCTo); |
1110 | } |
1111 | } |
1112 | } |
1113 | |
1114 | /* Find the index of the point with the smallest y.also return the |
1115 | * smallest and largest y */ |
1116 | static int |
1117 | GetFPolyYBounds(SppPointPtr pts, int n, double yFtrans, int *by, int *ty) |
1118 | { |
1119 | SppPointPtr ptMin; |
1120 | double ymin, ymax; |
1121 | SppPointPtr ptsStart = pts; |
1122 | |
1123 | ptMin = pts; |
1124 | ymin = ymax = (pts++)->y; |
1125 | |
1126 | while (--n > 0) { |
1127 | if (pts->y < ymin) { |
1128 | ptMin = pts; |
1129 | ymin = pts->y; |
1130 | } |
1131 | if (pts->y > ymax) |
1132 | ymax = pts->y; |
1133 | |
1134 | pts++; |
1135 | } |
1136 | |
1137 | *by = ICEIL(ymin + yFtrans); |
1138 | *ty = ICEIL(ymax + yFtrans - 1); |
1139 | return ptMin - ptsStart; |
1140 | } |
1141 | |
1142 | /* |
1143 | * miFillSppPoly written by Todd Newman; April. 1987. |
1144 | * |
1145 | * Fill a convex polygon. If the given polygon |
1146 | * is not convex, then the result is undefined. |
1147 | * The algorithm is to order the edges from smallest |
1148 | * y to largest by partitioning the array into a left |
1149 | * edge list and a right edge list. The algorithm used |
1150 | * to traverse each edge is digital differencing analyzer |
1151 | * line algorithm with y as the major axis. There's some funny linear |
1152 | * interpolation involved because of the subpixel postioning. |
1153 | */ |
1154 | static void |
1155 | miFillSppPoly(DrawablePtr dst, GCPtr pgc, int count, /* number of points */ |
1156 | SppPointPtr ptsIn, /* the points */ |
1157 | int xTrans, int yTrans, /* Translate each point by this */ |
1158 | double xFtrans, double yFtrans /* translate before conversion |
1159 | by this amount. This provides |
1160 | a mechanism to match rounding |
1161 | errors with any shape that must |
1162 | meet the polygon exactly. |
1163 | */ |
1164 | ) |
1165 | { |
1166 | double xl = 0.0, xr = 0.0, /* x vals of left and right edges */ |
1167 | ml = 0.0, /* left edge slope */ |
1168 | mr = 0.0, /* right edge slope */ |
1169 | dy, /* delta y */ |
1170 | i; /* loop counter */ |
1171 | int y, /* current scanline */ |
1172 | j, imin, /* index of vertex with smallest y */ |
1173 | ymin, /* y-extents of polygon */ |
1174 | ymax, *width, *FirstWidth, /* output buffer */ |
1175 | *Marked; /* set if this vertex has been used */ |
1176 | int left, right, /* indices to first endpoints */ |
1177 | nextleft, nextright; /* indices to second endpoints */ |
1178 | DDXPointPtr ptsOut, FirstPoint; /* output buffer */ |
1179 | |
1180 | if (pgc->miTranslate) { |
1181 | xTrans += dst->x; |
1182 | yTrans += dst->y; |
1183 | } |
1184 | |
1185 | imin = GetFPolyYBounds(ptsIn, count, yFtrans, &ymin, &ymax); |
1186 | |
1187 | y = ymax - ymin + 1; |
1188 | if ((count < 3) || (y <= 0)) |
1189 | return; |
1190 | ptsOut = FirstPoint = malloc(sizeof(DDXPointRec) * y); |
1191 | width = FirstWidth = malloc(sizeof(int) * y); |
1192 | Marked = malloc(sizeof(int) * count); |
1193 | |
1194 | if (!ptsOut || !width || !Marked) { |
1195 | free(Marked); |
1196 | free(width); |
1197 | free(ptsOut); |
1198 | return; |
1199 | } |
1200 | |
1201 | for (j = 0; j < count; j++) |
1202 | Marked[j] = 0; |
1203 | nextleft = nextright = imin; |
1204 | Marked[imin] = -1; |
1205 | y = ICEIL(ptsIn[nextleft].y + yFtrans); |
1206 | |
1207 | /* |
1208 | * loop through all edges of the polygon |
1209 | */ |
1210 | do { |
1211 | /* add a left edge if we need to */ |
1212 | if ((y > (ptsIn[nextleft].y + yFtrans) || |
1213 | ISEQUAL(y, ptsIn[nextleft].y + yFtrans)(fabs((y) - (ptsIn[nextleft].y + yFtrans)) <= 0.000001)) && |
1214 | Marked[nextleft] != 1) { |
1215 | Marked[nextleft]++; |
1216 | left = nextleft++; |
1217 | |
1218 | /* find the next edge, considering the end conditions */ |
1219 | if (nextleft >= count) |
1220 | nextleft = 0; |
1221 | |
1222 | /* now compute the starting point and slope */ |
1223 | dy = ptsIn[nextleft].y - ptsIn[left].y; |
1224 | if (dy != 0.0) { |
1225 | ml = (ptsIn[nextleft].x - ptsIn[left].x) / dy; |
1226 | dy = y - (ptsIn[left].y + yFtrans); |
1227 | xl = (ptsIn[left].x + xFtrans) + ml * max(dy, 0)(((dy) > (0)) ? (dy) : (0)); |
1228 | } |
1229 | } |
1230 | |
1231 | /* add a right edge if we need to */ |
1232 | if ((y > ptsIn[nextright].y + yFtrans) || |
1233 | (ISEQUAL(y, ptsIn[nextright].y + yFtrans)(fabs((y) - (ptsIn[nextright].y + yFtrans)) <= 0.000001) |
1234 | && Marked[nextright] != 1)) { |
1235 | Marked[nextright]++; |
1236 | right = nextright--; |
1237 | |
1238 | /* find the next edge, considering the end conditions */ |
1239 | if (nextright < 0) |
1240 | nextright = count - 1; |
1241 | |
1242 | /* now compute the starting point and slope */ |
1243 | dy = ptsIn[nextright].y - ptsIn[right].y; |
1244 | if (dy != 0.0) { |
1245 | mr = (ptsIn[nextright].x - ptsIn[right].x) / dy; |
1246 | dy = y - (ptsIn[right].y + yFtrans); |
1247 | xr = (ptsIn[right].x + xFtrans) + mr * max(dy, 0)(((dy) > (0)) ? (dy) : (0)); |
1248 | } |
1249 | } |
1250 | |
1251 | /* |
1252 | * generate scans to fill while we still have |
1253 | * a right edge as well as a left edge. |
1254 | */ |
1255 | i = (min(ptsIn[nextleft].y, ptsIn[nextright].y)(((ptsIn[nextleft].y) < (ptsIn[nextright].y)) ? (ptsIn[nextleft ].y) : (ptsIn[nextright].y)) + yFtrans) - y; |
1256 | |
1257 | if (i < EPSILON0.000001) { |
1258 | if (Marked[nextleft] && Marked[nextright]) { |
1259 | /* Arrgh, we're trapped! (no more points) |
1260 | * Out, we've got to get out of here before this decadence saps |
1261 | * our will completely! */ |
1262 | break; |
1263 | } |
1264 | continue; |
1265 | } |
1266 | else { |
1267 | j = (int) i; |
1268 | if (!j) |
1269 | j++; |
1270 | } |
1271 | while (j > 0) { |
1272 | int cxl, cxr; |
1273 | |
1274 | ptsOut->y = (y) + yTrans; |
1275 | |
1276 | cxl = ICEIL(xl); |
1277 | cxr = ICEIL(xr); |
1278 | /* reverse the edges if necessary */ |
1279 | if (xl < xr) { |
1280 | *(width++) = cxr - cxl; |
1281 | (ptsOut++)->x = cxl + xTrans; |
1282 | } |
1283 | else { |
1284 | *(width++) = cxl - cxr; |
1285 | (ptsOut++)->x = cxr + xTrans; |
1286 | } |
1287 | y++; |
1288 | |
1289 | /* increment down the edges */ |
1290 | xl += ml; |
1291 | xr += mr; |
1292 | j--; |
1293 | } |
1294 | } while (y <= ymax); |
1295 | |
1296 | /* Finally, fill the spans we've collected */ |
1297 | (*pgc->ops->FillSpans) (dst, pgc, |
1298 | ptsOut - FirstPoint, FirstPoint, FirstWidth, 1); |
1299 | free(Marked); |
1300 | free(FirstWidth); |
1301 | free(FirstPoint); |
1302 | } |
1303 | static double |
1304 | angleBetween(SppPointRec center, SppPointRec point1, SppPointRec point2) |
1305 | { |
1306 | double a1, a2, a; |
1307 | |
1308 | /* |
1309 | * reflect from X coordinates back to ellipse |
1310 | * coordinates -- y increasing upwards |
1311 | */ |
1312 | a1 = miDatan2(-(point1.y - center.y), point1.x - center.x); |
1313 | a2 = miDatan2(-(point2.y - center.y), point2.x - center.x); |
1314 | a = a2 - a1; |
1315 | if (a <= -180.0) |
1316 | a += 360.0; |
1317 | else if (a > 180.0) |
1318 | a -= 360.0; |
1319 | return a; |
1320 | } |
1321 | |
1322 | static void |
1323 | translateBounds(miArcFacePtr b, int x, int y, double fx, double fy) |
1324 | { |
1325 | fx += x; |
1326 | fy += y; |
1327 | b->clock.x -= fx; |
1328 | b->clock.y -= fy; |
1329 | b->center.x -= fx; |
1330 | b->center.y -= fy; |
1331 | b->counterClock.x -= fx; |
1332 | b->counterClock.y -= fy; |
1333 | } |
1334 | |
1335 | static void |
1336 | miArcJoin(DrawablePtr pDraw, GCPtr pGC, miArcFacePtr pLeft, |
1337 | miArcFacePtr pRight, int xOrgLeft, int yOrgLeft, |
1338 | double xFtransLeft, double yFtransLeft, |
1339 | int xOrgRight, int yOrgRight, |
1340 | double xFtransRight, double yFtransRight) |
1341 | { |
1342 | SppPointRec center, corner, otherCorner; |
1343 | SppPointRec poly[5], e; |
1344 | SppPointPtr pArcPts; |
1345 | int cpt; |
1346 | SppArcRec arc; |
1347 | miArcFaceRec Right, Left; |
1348 | int polyLen = 0; |
1349 | int xOrg, yOrg; |
1350 | double xFtrans, yFtrans; |
1351 | double a; |
1352 | double ae, ac2, ec2, bc2, de; |
1353 | double width; |
1354 | |
1355 | xOrg = (xOrgRight + xOrgLeft) / 2; |
1356 | yOrg = (yOrgRight + yOrgLeft) / 2; |
1357 | xFtrans = (xFtransLeft + xFtransRight) / 2; |
1358 | yFtrans = (yFtransLeft + yFtransRight) / 2; |
1359 | Right = *pRight; |
1360 | translateBounds(&Right, xOrg - xOrgRight, yOrg - yOrgRight, |
1361 | xFtrans - xFtransRight, yFtrans - yFtransRight); |
1362 | Left = *pLeft; |
1363 | translateBounds(&Left, xOrg - xOrgLeft, yOrg - yOrgLeft, |
1364 | xFtrans - xFtransLeft, yFtrans - yFtransLeft); |
1365 | pRight = &Right; |
1366 | pLeft = &Left; |
1367 | |
1368 | if (pRight->clock.x == pLeft->counterClock.x && |
1369 | pRight->clock.y == pLeft->counterClock.y) |
1370 | return; |
1371 | center = pRight->center; |
1372 | if (0 <= (a = angleBetween(center, pRight->clock, pLeft->counterClock)) |
1373 | && a <= 180.0) { |
1374 | corner = pRight->clock; |
1375 | otherCorner = pLeft->counterClock; |
1376 | } |
1377 | else { |
1378 | a = angleBetween(center, pLeft->clock, pRight->counterClock); |
1379 | corner = pLeft->clock; |
1380 | otherCorner = pRight->counterClock; |
1381 | } |
1382 | switch (pGC->joinStyle) { |
1383 | case JoinRound1: |
1384 | width = (pGC->lineWidth ? (double) pGC->lineWidth : (double) 1); |
1385 | |
1386 | arc.x = center.x - width / 2; |
1387 | arc.y = center.y - width / 2; |
1388 | arc.width = width; |
1389 | arc.height = width; |
1390 | arc.angle1 = -miDatan2(corner.y - center.y, corner.x - center.x); |
1391 | arc.angle2 = a; |
1392 | pArcPts = malloc(3 * sizeof(SppPointRec)); |
1393 | if (!pArcPts) |
1394 | return; |
1395 | pArcPts[0].x = otherCorner.x; |
1396 | pArcPts[0].y = otherCorner.y; |
1397 | pArcPts[1].x = center.x; |
1398 | pArcPts[1].y = center.y; |
1399 | pArcPts[2].x = corner.x; |
1400 | pArcPts[2].y = corner.y; |
1401 | if ((cpt = miGetArcPts(&arc, 3, &pArcPts))) { |
1402 | /* by drawing with miFillSppPoly and setting the endpoints of the arc |
1403 | * to be the corners, we assure that the cap will meet up with the |
1404 | * rest of the line */ |
1405 | miFillSppPoly(pDraw, pGC, cpt, pArcPts, xOrg, yOrg, xFtrans, |
1406 | yFtrans); |
1407 | } |
1408 | free(pArcPts); |
1409 | return; |
1410 | case JoinMiter0: |
1411 | /* |
1412 | * don't miter arcs with less than 11 degrees between them |
1413 | */ |
1414 | if (a < 169.0) { |
1415 | poly[0] = corner; |
1416 | poly[1] = center; |
1417 | poly[2] = otherCorner; |
1418 | bc2 = (corner.x - otherCorner.x) * (corner.x - otherCorner.x) + |
1419 | (corner.y - otherCorner.y) * (corner.y - otherCorner.y); |
1420 | ec2 = bc2 / 4; |
1421 | ac2 = (corner.x - center.x) * (corner.x - center.x) + |
1422 | (corner.y - center.y) * (corner.y - center.y); |
1423 | ae = sqrt(ac2 - ec2); |
1424 | de = ec2 / ae; |
1425 | e.x = (corner.x + otherCorner.x) / 2; |
1426 | e.y = (corner.y + otherCorner.y) / 2; |
1427 | poly[3].x = e.x + de * (e.x - center.x) / ae; |
1428 | poly[3].y = e.y + de * (e.y - center.y) / ae; |
1429 | poly[4] = corner; |
1430 | polyLen = 5; |
1431 | break; |
1432 | } |
1433 | case JoinBevel2: |
1434 | poly[0] = corner; |
1435 | poly[1] = center; |
1436 | poly[2] = otherCorner; |
1437 | poly[3] = corner; |
1438 | polyLen = 4; |
1439 | break; |
1440 | } |
1441 | miFillSppPoly(pDraw, pGC, polyLen, poly, xOrg, yOrg, xFtrans, yFtrans); |
1442 | } |
1443 | |
1444 | /*ARGSUSED*/ static void |
1445 | miArcCap(DrawablePtr pDraw, |
1446 | GCPtr pGC, |
1447 | miArcFacePtr pFace, |
1448 | int end, int xOrg, int yOrg, double xFtrans, double yFtrans) |
1449 | { |
1450 | SppPointRec corner, otherCorner, center, endPoint, poly[5]; |
1451 | |
1452 | corner = pFace->clock; |
1453 | otherCorner = pFace->counterClock; |
1454 | center = pFace->center; |
1455 | switch (pGC->capStyle) { |
1456 | case CapProjecting3: |
1457 | poly[0].x = otherCorner.x; |
1458 | poly[0].y = otherCorner.y; |
1459 | poly[1].x = corner.x; |
1460 | poly[1].y = corner.y; |
1461 | poly[2].x = corner.x - (center.y - corner.y); |
1462 | poly[2].y = corner.y + (center.x - corner.x); |
1463 | poly[3].x = otherCorner.x - (otherCorner.y - center.y); |
1464 | poly[3].y = otherCorner.y + (otherCorner.x - center.x); |
1465 | poly[4].x = otherCorner.x; |
1466 | poly[4].y = otherCorner.y; |
1467 | miFillSppPoly(pDraw, pGC, 5, poly, xOrg, yOrg, xFtrans, yFtrans); |
1468 | break; |
1469 | case CapRound2: |
1470 | /* |
1471 | * miRoundCap just needs these to be unequal. |
1472 | */ |
1473 | endPoint = center; |
1474 | endPoint.x = endPoint.x + 100; |
1475 | miRoundCap(pDraw, pGC, center, endPoint, corner, otherCorner, 0, |
1476 | -xOrg, -yOrg, xFtrans, yFtrans); |
1477 | break; |
1478 | } |
1479 | } |
1480 | |
1481 | /* MIROUNDCAP -- a private helper function |
1482 | * Put Rounded cap on end. pCenter is the center of this end of the line |
1483 | * pEnd is the center of the other end of the line. pCorner is one of the |
1484 | * two corners at this end of the line. |
1485 | * NOTE: pOtherCorner must be counter-clockwise from pCorner. |
1486 | */ |
1487 | /*ARGSUSED*/ static void |
1488 | miRoundCap(DrawablePtr pDraw, |
1489 | GCPtr pGC, |
1490 | SppPointRec pCenter, |
1491 | SppPointRec pEnd, |
1492 | SppPointRec pCorner, |
1493 | SppPointRec pOtherCorner, |
1494 | int fLineEnd, int xOrg, int yOrg, double xFtrans, double yFtrans) |
1495 | { |
1496 | int cpt; |
1497 | double width; |
1498 | SppArcRec arc; |
1499 | SppPointPtr pArcPts; |
1500 | |
1501 | width = (pGC->lineWidth ? (double) pGC->lineWidth : (double) 1); |
1502 | |
1503 | arc.x = pCenter.x - width / 2; |
1504 | arc.y = pCenter.y - width / 2; |
1505 | arc.width = width; |
1506 | arc.height = width; |
1507 | arc.angle1 = -miDatan2(pCorner.y - pCenter.y, pCorner.x - pCenter.x); |
1508 | if (PTISEQUAL(pCenter, pEnd)((fabs((pCenter.x) - (pEnd.x)) <= 0.000001) && (fabs ((pCenter.y) - (pEnd.y)) <= 0.000001))) |
1509 | arc.angle2 = -180.0; |
1510 | else { |
1511 | arc.angle2 = |
1512 | -miDatan2(pOtherCorner.y - pCenter.y, |
1513 | pOtherCorner.x - pCenter.x) - arc.angle1; |
1514 | if (arc.angle2 < 0) |
1515 | arc.angle2 += 360.0; |
1516 | } |
1517 | pArcPts = (SppPointPtr) NULL((void*)0); |
1518 | if ((cpt = miGetArcPts(&arc, 0, &pArcPts))) { |
1519 | /* by drawing with miFillSppPoly and setting the endpoints of the arc |
1520 | * to be the corners, we assure that the cap will meet up with the |
1521 | * rest of the line */ |
1522 | miFillSppPoly(pDraw, pGC, cpt, pArcPts, -xOrg, -yOrg, xFtrans, yFtrans); |
1523 | } |
1524 | free(pArcPts); |
1525 | } |
1526 | |
1527 | /* |
1528 | * To avoid inaccuracy at the cardinal points, use trig functions |
1529 | * which are exact for those angles |
1530 | */ |
1531 | |
1532 | #ifndef M_PI3.14159265358979323846264338327950288 |
1533 | #define M_PI3.14159265358979323846264338327950288 3.14159265358979323846 |
1534 | #endif |
1535 | #ifndef M_PI_21.57079632679489661923132169163975144 |
1536 | #define M_PI_21.57079632679489661923132169163975144 1.57079632679489661923 |
1537 | #endif |
1538 | |
1539 | #define Dsin(d)((d) == 0.0 ? 0.0 : ((d) == 90.0 ? 1.0 : sin(d*3.14159265358979323846264338327950288 /180.0))) ((d) == 0.0 ? 0.0 : ((d) == 90.0 ? 1.0 : sin(d*M_PI3.14159265358979323846264338327950288/180.0))) |
1540 | #define Dcos(d)((d) == 0.0 ? 1.0 : ((d) == 90.0 ? 0.0 : cos(d*3.14159265358979323846264338327950288 /180.0))) ((d) == 0.0 ? 1.0 : ((d) == 90.0 ? 0.0 : cos(d*M_PI3.14159265358979323846264338327950288/180.0))) |
1541 | #define mod(a,b)((a) >= 0 ? (a) % (b) : (b) - (-(a)) % (b)) ((a) >= 0 ? (a) % (b) : (b) - (-(a)) % (b)) |
1542 | |
1543 | static double |
1544 | miDcos(double a) |
1545 | { |
1546 | int i; |
1547 | |
1548 | if (floor(a / 90) == a / 90) { |
1549 | i = (int) (a / 90.0); |
1550 | switch (mod(i, 4)((i) >= 0 ? (i) % (4) : (4) - (-(i)) % (4))) { |
1551 | case 0: |
1552 | return 1; |
1553 | case 1: |
1554 | return 0; |
1555 | case 2: |
1556 | return -1; |
1557 | case 3: |
1558 | return 0; |
1559 | } |
1560 | } |
1561 | return cos(a * M_PI3.14159265358979323846264338327950288 / 180.0); |
1562 | } |
1563 | |
1564 | static double |
1565 | miDsin(double a) |
1566 | { |
1567 | int i; |
1568 | |
1569 | if (floor(a / 90) == a / 90) { |
1570 | i = (int) (a / 90.0); |
1571 | switch (mod(i, 4)((i) >= 0 ? (i) % (4) : (4) - (-(i)) % (4))) { |
1572 | case 0: |
1573 | return 0; |
1574 | case 1: |
1575 | return 1; |
1576 | case 2: |
1577 | return 0; |
1578 | case 3: |
1579 | return -1; |
1580 | } |
1581 | } |
1582 | return sin(a * M_PI3.14159265358979323846264338327950288 / 180.0); |
1583 | } |
1584 | |
1585 | static double |
1586 | miDasin(double v) |
1587 | { |
1588 | if (v == 0) |
1589 | return 0.0; |
1590 | if (v == 1.0) |
1591 | return 90.0; |
1592 | if (v == -1.0) |
1593 | return -90.0; |
1594 | return asin(v) * (180.0 / M_PI3.14159265358979323846264338327950288); |
1595 | } |
1596 | |
1597 | static double |
1598 | miDatan2(double dy, double dx) |
1599 | { |
1600 | if (dy == 0) { |
1601 | if (dx >= 0) |
1602 | return 0.0; |
1603 | return 180.0; |
1604 | } |
1605 | else if (dx == 0) { |
1606 | if (dy > 0) |
1607 | return 90.0; |
1608 | return -90.0; |
1609 | } |
1610 | else if (fabs(dy) == fabs(dx)) { |
1611 | if (dy > 0) { |
1612 | if (dx > 0) |
1613 | return 45.0; |
1614 | return 135.0; |
1615 | } |
1616 | else { |
1617 | if (dx > 0) |
1618 | return 315.0; |
1619 | return 225.0; |
1620 | } |
1621 | } |
1622 | else { |
1623 | return atan2(dy, dx) * (180.0 / M_PI3.14159265358979323846264338327950288); |
1624 | } |
1625 | } |
1626 | |
1627 | /* MIGETARCPTS -- Converts an arc into a set of line segments -- a helper |
1628 | * routine for filled arc and line (round cap) code. |
1629 | * Returns the number of points in the arc. Note that it takes a pointer |
1630 | * to a pointer to where it should put the points and an index (cpt). |
1631 | * This procedure allocates the space necessary to fit the arc points. |
1632 | * Sometimes it's convenient for those points to be at the end of an existing |
1633 | * array. (For example, if we want to leave a spare point to make sectors |
1634 | * instead of segments.) So we pass in the malloc()ed chunk that contains the |
1635 | * array and an index saying where we should start stashing the points. |
1636 | * If there isn't an array already, we just pass in a null pointer and |
1637 | * count on realloc() to handle the null pointer correctly. |
1638 | */ |
1639 | static int |
1640 | miGetArcPts(SppArcPtr parc, /* points to an arc */ |
1641 | int cpt, /* number of points already in arc list */ |
1642 | SppPointPtr * ppPts) |
1643 | { /* pointer to pointer to arc-list -- modified */ |
1644 | double st, /* Start Theta, start angle */ |
1645 | et, /* End Theta, offset from start theta */ |
1646 | dt, /* Delta Theta, angle to sweep ellipse */ |
1647 | cdt, /* Cos Delta Theta, actually 2 cos(dt) */ |
1648 | x0, y0, /* the recurrence formula needs two points to start */ |
1649 | x1, y1, x2, y2, /* this will be the new point generated */ |
1650 | xc, yc; /* the center point */ |
1651 | int count, i; |
1652 | SppPointPtr poly; |
1653 | |
1654 | /* The spec says that positive angles indicate counterclockwise motion. |
1655 | * Given our coordinate system (with 0,0 in the upper left corner), |
1656 | * the screen appears flipped in Y. The easiest fix is to negate the |
1657 | * angles given */ |
1658 | |
1659 | st = -parc->angle1; |
1660 | |
1661 | et = -parc->angle2; |
1662 | |
1663 | /* Try to get a delta theta that is within 1/2 pixel. Then adjust it |
1664 | * so that it divides evenly into the total. |
1665 | * I'm just using cdt 'cause I'm lazy. |
1666 | */ |
1667 | cdt = parc->width; |
1668 | if (parc->height > cdt) |
1669 | cdt = parc->height; |
1670 | cdt /= 2.0; |
1671 | if (cdt <= 0) |
1672 | return 0; |
1673 | if (cdt < 1.0) |
1674 | cdt = 1.0; |
1675 | dt = miDasin(1.0 / cdt); /* minimum step necessary */ |
1676 | count = et / dt; |
1677 | count = abs(count) + 1; |
1678 | dt = et / count; |
1679 | count++; |
1680 | |
1681 | cdt = 2 * miDcos(dt); |
1682 | if (!(poly = (SppPointPtr) realloc((void *) *ppPts, |
1683 | (cpt + count) * sizeof(SppPointRec)))) |
1684 | return 0; |
1685 | *ppPts = poly; |
1686 | |
1687 | xc = parc->width / 2.0; /* store half width and half height */ |
1688 | yc = parc->height / 2.0; |
1689 | |
1690 | x0 = xc * miDcos(st); |
1691 | y0 = yc * miDsin(st); |
1692 | x1 = xc * miDcos(st + dt); |
1693 | y1 = yc * miDsin(st + dt); |
1694 | xc += parc->x; /* by adding initial point, these become */ |
1695 | yc += parc->y; /* the center point */ |
1696 | |
1697 | poly[cpt].x = (xc + x0); |
1698 | poly[cpt].y = (yc + y0); |
1699 | poly[cpt + 1].x = (xc + x1); |
1700 | poly[cpt + 1].y = (yc + y1); |
1701 | |
1702 | for (i = 2; i < count; i++) { |
1703 | x2 = cdt * x1 - x0; |
1704 | y2 = cdt * y1 - y0; |
1705 | |
1706 | poly[cpt + i].x = (xc + x2); |
1707 | poly[cpt + i].y = (yc + y2); |
1708 | |
1709 | x0 = x1; |
1710 | y0 = y1; |
1711 | x1 = x2; |
1712 | y1 = y2; |
1713 | } |
1714 | /* adjust the last point */ |
1715 | if (fabs(parc->angle2) >= 360.0) |
1716 | poly[cpt + i - 1] = poly[0]; |
1717 | else { |
1718 | poly[cpt + i - 1].x = (miDcos(st + et) * parc->width / 2.0 + xc); |
1719 | poly[cpt + i - 1].y = (miDsin(st + et) * parc->height / 2.0 + yc); |
1720 | } |
1721 | |
1722 | return count; |
1723 | } |
1724 | |
1725 | struct arcData { |
1726 | double x0, y0, x1, y1; |
1727 | int selfJoin; |
1728 | }; |
1729 | |
1730 | #define ADD_REALLOC_STEP20 20 |
1731 | |
1732 | static void |
1733 | addCap(miArcCapPtr * capsp, int *ncapsp, int *sizep, int end, int arcIndex) |
1734 | { |
1735 | int newsize; |
1736 | miArcCapPtr cap; |
1737 | |
1738 | if (*ncapsp == *sizep) { |
1739 | newsize = *sizep + ADD_REALLOC_STEP20; |
1740 | cap = (miArcCapPtr) realloc(*capsp, newsize * sizeof(**capsp)); |
1741 | if (!cap) |
1742 | return; |
1743 | *sizep = newsize; |
1744 | *capsp = cap; |
1745 | } |
1746 | cap = &(*capsp)[*ncapsp]; |
1747 | cap->end = end; |
1748 | cap->arcIndex = arcIndex; |
1749 | ++*ncapsp; |
1750 | } |
1751 | |
1752 | static void |
1753 | addJoin(miArcJoinPtr * joinsp, |
1754 | int *njoinsp, |
1755 | int *sizep, |
1756 | int end0, int index0, int phase0, int end1, int index1, int phase1) |
1757 | { |
1758 | int newsize; |
1759 | miArcJoinPtr join; |
1760 | |
1761 | if (*njoinsp == *sizep) { |
1762 | newsize = *sizep + ADD_REALLOC_STEP20; |
1763 | join = (miArcJoinPtr) realloc(*joinsp, newsize * sizeof(**joinsp)); |
1764 | if (!join) |
1765 | return; |
1766 | *sizep = newsize; |
1767 | *joinsp = join; |
1768 | } |
1769 | join = &(*joinsp)[*njoinsp]; |
1770 | join->end0 = end0; |
1771 | join->arcIndex0 = index0; |
1772 | join->phase0 = phase0; |
1773 | join->end1 = end1; |
1774 | join->arcIndex1 = index1; |
1775 | join->phase1 = phase1; |
1776 | ++*njoinsp; |
1777 | } |
1778 | |
1779 | static miArcDataPtr |
1780 | addArc(miArcDataPtr * arcsp, int *narcsp, int *sizep, xArc * xarc) |
1781 | { |
1782 | int newsize; |
1783 | miArcDataPtr arc; |
1784 | |
1785 | if (*narcsp == *sizep) { |
1786 | newsize = *sizep + ADD_REALLOC_STEP20; |
1787 | arc = (miArcDataPtr) realloc(*arcsp, newsize * sizeof(**arcsp)); |
1788 | if (!arc) |
1789 | return NULL((void*)0); |
1790 | *sizep = newsize; |
1791 | *arcsp = arc; |
1792 | } |
1793 | arc = &(*arcsp)[*narcsp]; |
1794 | arc->arc = *xarc; |
1795 | ++*narcsp; |
1796 | return arc; |
1797 | } |
1798 | |
1799 | static void |
1800 | miFreeArcs(miPolyArcPtr arcs, GCPtr pGC) |
1801 | { |
1802 | int iphase; |
1803 | |
1804 | for (iphase = ((pGC->lineStyle == LineDoubleDash2) ? 1 : 0); |
1805 | iphase >= 0; iphase--) { |
1806 | if (arcs[iphase].narcs > 0) |
1807 | free(arcs[iphase].arcs); |
1808 | if (arcs[iphase].njoins > 0) |
1809 | free(arcs[iphase].joins); |
1810 | if (arcs[iphase].ncaps > 0) |
1811 | free(arcs[iphase].caps); |
1812 | } |
1813 | free(arcs); |
1814 | } |
1815 | |
1816 | /* |
1817 | * map angles to radial distance. This only deals with the first quadrant |
1818 | */ |
1819 | |
1820 | /* |
1821 | * a polygonal approximation to the arc for computing arc lengths |
1822 | */ |
1823 | |
1824 | #define DASH_MAP_SIZE91 91 |
1825 | |
1826 | #define dashIndexToAngle(di)((((double) (di)) * 90.0) / ((double) 91 - 1)) ((((double) (di)) * 90.0) / ((double) DASH_MAP_SIZE91 - 1)) |
1827 | #define xAngleToDashIndex(xa)((((long) (xa)) * (91 - 1)) / (90 * 64)) ((((long) (xa)) * (DASH_MAP_SIZE91 - 1)) / (90 * 64)) |
1828 | #define dashIndexToXAngle(di)((((long) (di)) * (90 * 64)) / (91 - 1)) ((((long) (di)) * (90 * 64)) / (DASH_MAP_SIZE91 - 1)) |
1829 | #define dashXAngleStep(((double) (90 * 64)) / ((double) (91 - 1))) (((double) (90 * 64)) / ((double) (DASH_MAP_SIZE91 - 1))) |
1830 | |
1831 | typedef struct { |
1832 | double map[DASH_MAP_SIZE91]; |
1833 | } dashMap; |
1834 | |
1835 | static int computeAngleFromPath(int startAngle, int endAngle, dashMap * map, |
1836 | int *lenp, int backwards); |
1837 | |
1838 | static void |
1839 | computeDashMap(xArc * arcp, dashMap * map) |
1840 | { |
1841 | int di; |
1842 | double a, x, y, prevx = 0.0, prevy = 0.0, dist; |
1843 | |
1844 | for (di = 0; di < DASH_MAP_SIZE91; di++) { |
1845 | a = dashIndexToAngle(di)((((double) (di)) * 90.0) / ((double) 91 - 1)); |
1846 | x = ((double) arcp->width / 2.0) * miDcos(a); |
1847 | y = ((double) arcp->height / 2.0) * miDsin(a); |
1848 | if (di == 0) { |
1849 | map->map[di] = 0.0; |
1850 | } |
1851 | else { |
1852 | dist = hypot(x - prevx, y - prevy); |
1853 | map->map[di] = map->map[di - 1] + dist; |
1854 | } |
1855 | prevx = x; |
1856 | prevy = y; |
1857 | } |
1858 | } |
1859 | |
1860 | typedef enum { HORIZONTAL, VERTICAL, OTHER } arcTypes; |
1861 | |
1862 | /* this routine is a bit gory */ |
1863 | |
1864 | static miPolyArcPtr |
1865 | miComputeArcs(xArc * parcs, int narcs, GCPtr pGC) |
1866 | { |
1867 | int isDashed, isDoubleDash; |
1868 | int dashOffset; |
1869 | miPolyArcPtr arcs; |
1870 | int start, i, j, k = 0, nexti, nextk = 0; |
1871 | int joinSize[2]; |
1872 | int capSize[2]; |
1873 | int arcSize[2]; |
1874 | int angle2; |
1875 | double a0, a1; |
1876 | struct arcData *data; |
1877 | miArcDataPtr arc; |
1878 | xArc xarc; |
1879 | int iphase, prevphase = 0, joinphase; |
1880 | int arcsJoin; |
1881 | int selfJoin; |
1882 | |
1883 | int iDash = 0, dashRemaining = 0; |
1884 | int iDashStart = 0, dashRemainingStart = 0, iphaseStart; |
1885 | int startAngle, spanAngle, endAngle, backwards = 0; |
1886 | int prevDashAngle, dashAngle; |
1887 | dashMap map; |
1888 | |
1889 | isDashed = !(pGC->lineStyle == LineSolid0); |
1890 | isDoubleDash = (pGC->lineStyle == LineDoubleDash2); |
1891 | dashOffset = pGC->dashOffset; |
1892 | |
1893 | data = malloc(narcs * sizeof(struct arcData)); |
1894 | if (!data) |
1895 | return NULL((void*)0); |
1896 | arcs = malloc(sizeof(*arcs) * (isDoubleDash ? 2 : 1)); |
1897 | if (!arcs) { |
1898 | free(data); |
1899 | return NULL((void*)0); |
1900 | } |
1901 | for (i = 0; i < narcs; i++) { |
1902 | a0 = todeg(parcs[i].angle1)(((double) (parcs[i].angle1)) / 64.0); |
1903 | angle2 = parcs[i].angle2; |
1904 | if (angle2 > FULLCIRCLE(360 * 64)) |
1905 | angle2 = FULLCIRCLE(360 * 64); |
1906 | else if (angle2 < -FULLCIRCLE(360 * 64)) |
1907 | angle2 = -FULLCIRCLE(360 * 64); |
1908 | data[i].selfJoin = angle2 == FULLCIRCLE(360 * 64) || angle2 == -FULLCIRCLE(360 * 64); |
1909 | a1 = todeg(parcs[i].angle1 + angle2)(((double) (parcs[i].angle1 + angle2)) / 64.0); |
1910 | data[i].x0 = |
1911 | parcs[i].x + (double) parcs[i].width / 2 * (1 + miDcos(a0)); |
1912 | data[i].y0 = |
1913 | parcs[i].y + (double) parcs[i].height / 2 * (1 - miDsin(a0)); |
1914 | data[i].x1 = |
1915 | parcs[i].x + (double) parcs[i].width / 2 * (1 + miDcos(a1)); |
1916 | data[i].y1 = |
1917 | parcs[i].y + (double) parcs[i].height / 2 * (1 - miDsin(a1)); |
1918 | } |
1919 | |
1920 | for (iphase = 0; iphase < (isDoubleDash ? 2 : 1); iphase++) { |
1921 | arcs[iphase].njoins = 0; |
1922 | arcs[iphase].joins = 0; |
1923 | joinSize[iphase] = 0; |
1924 | |
1925 | arcs[iphase].ncaps = 0; |
1926 | arcs[iphase].caps = 0; |
1927 | capSize[iphase] = 0; |
1928 | |
1929 | arcs[iphase].narcs = 0; |
1930 | arcs[iphase].arcs = 0; |
1931 | arcSize[iphase] = 0; |
1932 | } |
1933 | |
1934 | iphase = 0; |
1935 | if (isDashed) { |
1936 | iDash = 0; |
1937 | dashRemaining = pGC->dash[0]; |
1938 | while (dashOffset > 0) { |
1939 | if (dashOffset >= dashRemaining) { |
1940 | dashOffset -= dashRemaining; |
1941 | iphase = iphase ? 0 : 1; |
1942 | iDash++; |
1943 | if (iDash == pGC->numInDashList) |
1944 | iDash = 0; |
1945 | dashRemaining = pGC->dash[iDash]; |
1946 | } |
1947 | else { |
1948 | dashRemaining -= dashOffset; |
1949 | dashOffset = 0; |
1950 | } |
1951 | } |
1952 | iDashStart = iDash; |
1953 | dashRemainingStart = dashRemaining; |
1954 | } |
1955 | iphaseStart = iphase; |
1956 | |
1957 | for (i = narcs - 1; i >= 0; i--) { |
1958 | j = i + 1; |
1959 | if (j == narcs) |
1960 | j = 0; |
1961 | if (data[i].selfJoin || i == j || |
1962 | (UNEQUAL(data[i].x1, data[j].x0)(fabs((data[i].x1) - (data[j].x0)) > 0.000001) || |
1963 | UNEQUAL(data[i].y1, data[j].y0)(fabs((data[i].y1) - (data[j].y0)) > 0.000001))) { |
1964 | if (iphase == 0 || isDoubleDash) |
1965 | addCap(&arcs[iphase].caps, &arcs[iphase].ncaps, |
1966 | &capSize[iphase], RIGHT_END0, 0); |
1967 | break; |
1968 | } |
1969 | } |
1970 | start = i + 1; |
1971 | if (start == narcs) |
1972 | start = 0; |
1973 | i = start; |
1974 | for (;;) { |
1975 | j = i + 1; |
1976 | if (j == narcs) |
1977 | j = 0; |
1978 | nexti = i + 1; |
1979 | if (nexti == narcs) |
1980 | nexti = 0; |
1981 | if (isDashed) { |
1982 | /* |
1983 | ** deal with dashed arcs. Use special rules for certain 0 area arcs. |
1984 | ** Presumably, the other 0 area arcs still aren't done right. |
1985 | */ |
1986 | arcTypes arcType = OTHER; |
1987 | CARD16 thisLength; |
1988 | |
1989 | if (parcs[i].height == 0 |
1990 | && (parcs[i].angle1 % FULLCIRCLE(360 * 64)) == 0x2d00 |
1991 | && parcs[i].angle2 == 0x2d00) |
1992 | arcType = HORIZONTAL; |
1993 | else if (parcs[i].width == 0 |
1994 | && (parcs[i].angle1 % FULLCIRCLE(360 * 64)) == 0x1680 |
1995 | && parcs[i].angle2 == 0x2d00) |
1996 | arcType = VERTICAL; |
1997 | if (arcType == OTHER) { |
1998 | /* |
1999 | * precompute an approximation map |
2000 | */ |
2001 | computeDashMap(&parcs[i], &map); |
2002 | /* |
2003 | * compute each individual dash segment using the path |
2004 | * length function |
2005 | */ |
2006 | startAngle = parcs[i].angle1; |
2007 | spanAngle = parcs[i].angle2; |
2008 | if (spanAngle > FULLCIRCLE(360 * 64)) |
2009 | spanAngle = FULLCIRCLE(360 * 64); |
2010 | else if (spanAngle < -FULLCIRCLE(360 * 64)) |
2011 | spanAngle = -FULLCIRCLE(360 * 64); |
2012 | if (startAngle < 0) |
2013 | startAngle = FULLCIRCLE(360 * 64) - (-startAngle) % FULLCIRCLE(360 * 64); |
2014 | if (startAngle >= FULLCIRCLE(360 * 64)) |
2015 | startAngle = startAngle % FULLCIRCLE(360 * 64); |
2016 | endAngle = startAngle + spanAngle; |
2017 | backwards = spanAngle < 0; |
2018 | } |
2019 | else { |
2020 | xarc = parcs[i]; |
2021 | if (arcType == VERTICAL) { |
2022 | xarc.angle1 = 0x1680; |
2023 | startAngle = parcs[i].y; |
2024 | endAngle = startAngle + parcs[i].height; |
2025 | } |
2026 | else { |
2027 | xarc.angle1 = 0x2d00; |
2028 | startAngle = parcs[i].x; |
2029 | endAngle = startAngle + parcs[i].width; |
2030 | } |
2031 | } |
2032 | dashAngle = startAngle; |
2033 | selfJoin = data[i].selfJoin && (iphase == 0 || isDoubleDash); |
2034 | /* |
2035 | * add dashed arcs to each bucket |
2036 | */ |
2037 | arc = 0; |
2038 | while (dashAngle != endAngle) { |
2039 | prevDashAngle = dashAngle; |
2040 | if (arcType == OTHER) { |
2041 | dashAngle = computeAngleFromPath(prevDashAngle, endAngle, |
2042 | &map, &dashRemaining, |
2043 | backwards); |
2044 | /* avoid troubles with huge arcs and small dashes */ |
2045 | if (dashAngle == prevDashAngle) { |
2046 | if (backwards) |
2047 | dashAngle--; |
2048 | else |
2049 | dashAngle++; |
2050 | } |
2051 | } |
2052 | else { |
2053 | thisLength = (dashAngle + dashRemaining <= endAngle) ? |
2054 | dashRemaining : endAngle - dashAngle; |
2055 | if (arcType == VERTICAL) { |
2056 | xarc.y = dashAngle; |
2057 | xarc.height = thisLength; |
2058 | } |
2059 | else { |
2060 | xarc.x = dashAngle; |
2061 | xarc.width = thisLength; |
2062 | } |
2063 | dashAngle += thisLength; |
2064 | dashRemaining -= thisLength; |
2065 | } |
2066 | if (iphase == 0 || isDoubleDash) { |
2067 | if (arcType == OTHER) { |
2068 | xarc = parcs[i]; |
2069 | spanAngle = prevDashAngle; |
2070 | if (spanAngle < 0) |
2071 | spanAngle = FULLCIRCLE(360 * 64) - (-spanAngle) % FULLCIRCLE(360 * 64); |
2072 | if (spanAngle >= FULLCIRCLE(360 * 64)) |
2073 | spanAngle = spanAngle % FULLCIRCLE(360 * 64); |
2074 | xarc.angle1 = spanAngle; |
2075 | spanAngle = dashAngle - prevDashAngle; |
2076 | if (backwards) { |
2077 | if (dashAngle > prevDashAngle) |
2078 | spanAngle = -FULLCIRCLE(360 * 64) + spanAngle; |
2079 | } |
2080 | else { |
2081 | if (dashAngle < prevDashAngle) |
2082 | spanAngle = FULLCIRCLE(360 * 64) + spanAngle; |
2083 | } |
2084 | if (spanAngle > FULLCIRCLE(360 * 64)) |
2085 | spanAngle = FULLCIRCLE(360 * 64); |
2086 | if (spanAngle < -FULLCIRCLE(360 * 64)) |
2087 | spanAngle = -FULLCIRCLE(360 * 64); |
2088 | xarc.angle2 = spanAngle; |
2089 | } |
2090 | arc = addArc(&arcs[iphase].arcs, &arcs[iphase].narcs, |
2091 | &arcSize[iphase], &xarc); |
2092 | if (!arc) |
2093 | goto arcfail; |
2094 | /* |
2095 | * cap each end of an on/off dash |
2096 | */ |
2097 | if (!isDoubleDash) { |
2098 | if (prevDashAngle != startAngle) { |
2099 | addCap(&arcs[iphase].caps, |
2100 | &arcs[iphase].ncaps, |
2101 | &capSize[iphase], RIGHT_END0, |
2102 | arc - arcs[iphase].arcs); |
2103 | |
2104 | } |
2105 | if (dashAngle != endAngle) { |
2106 | addCap(&arcs[iphase].caps, |
2107 | &arcs[iphase].ncaps, |
2108 | &capSize[iphase], LEFT_END1, |
2109 | arc - arcs[iphase].arcs); |
2110 | } |
2111 | } |
2112 | arc->cap = arcs[iphase].ncaps; |
2113 | arc->join = arcs[iphase].njoins; |
2114 | arc->render = 0; |
2115 | arc->selfJoin = 0; |
2116 | if (dashAngle == endAngle) |
2117 | arc->selfJoin = selfJoin; |
2118 | } |
2119 | prevphase = iphase; |
2120 | if (dashRemaining <= 0) { |
2121 | ++iDash; |
2122 | if (iDash == pGC->numInDashList) |
2123 | iDash = 0; |
2124 | iphase = iphase ? 0 : 1; |
2125 | dashRemaining = pGC->dash[iDash]; |
2126 | } |
2127 | } |
2128 | /* |
2129 | * make sure a place exists for the position data when |
2130 | * drawing a zero-length arc |
2131 | */ |
2132 | if (startAngle == endAngle) { |
2133 | prevphase = iphase; |
2134 | if (!isDoubleDash && iphase == 1) |
2135 | prevphase = 0; |
2136 | arc = addArc(&arcs[prevphase].arcs, &arcs[prevphase].narcs, |
2137 | &arcSize[prevphase], &parcs[i]); |
2138 | if (!arc) |
2139 | goto arcfail; |
2140 | arc->join = arcs[prevphase].njoins; |
2141 | arc->cap = arcs[prevphase].ncaps; |
2142 | arc->selfJoin = data[i].selfJoin; |
2143 | } |
2144 | } |
2145 | else { |
2146 | arc = addArc(&arcs[iphase].arcs, &arcs[iphase].narcs, |
2147 | &arcSize[iphase], &parcs[i]); |
2148 | if (!arc) |
2149 | goto arcfail; |
2150 | arc->join = arcs[iphase].njoins; |
2151 | arc->cap = arcs[iphase].ncaps; |
2152 | arc->selfJoin = data[i].selfJoin; |
2153 | prevphase = iphase; |
2154 | } |
2155 | if (prevphase == 0 || isDoubleDash) |
2156 | k = arcs[prevphase].narcs - 1; |
2157 | if (iphase == 0 || isDoubleDash) |
2158 | nextk = arcs[iphase].narcs; |
2159 | if (nexti == start) { |
2160 | nextk = 0; |
2161 | if (isDashed) { |
2162 | iDash = iDashStart; |
2163 | iphase = iphaseStart; |
2164 | dashRemaining = dashRemainingStart; |
2165 | } |
2166 | } |
2167 | arcsJoin = narcs > 1 && i != j && |
2168 | ISEQUAL(data[i].x1, data[j].x0)(fabs((data[i].x1) - (data[j].x0)) <= 0.000001) && |
2169 | ISEQUAL(data[i].y1, data[j].y0)(fabs((data[i].y1) - (data[j].y0)) <= 0.000001) && |
2170 | !data[i].selfJoin && !data[j].selfJoin; |
2171 | if (arc) { |
2172 | if (arcsJoin) |
2173 | arc->render = 0; |
2174 | else |
2175 | arc->render = 1; |
2176 | } |
2177 | if (arcsJoin && |
2178 | (prevphase == 0 || isDoubleDash) && (iphase == 0 || isDoubleDash)) { |
2179 | joinphase = iphase; |
2180 | if (isDoubleDash) { |
2181 | if (nexti == start) |
2182 | joinphase = iphaseStart; |
2183 | /* |
2184 | * if the join is right at the dash, |
2185 | * draw the join in foreground |
2186 | * This is because the foreground |
2187 | * arcs are computed second, the results |
2188 | * of which are needed to draw the join |
2189 | */ |
2190 | if (joinphase != prevphase) |
2191 | joinphase = 0; |
2192 | } |
2193 | if (joinphase == 0 || isDoubleDash) { |
2194 | addJoin(&arcs[joinphase].joins, |
2195 | &arcs[joinphase].njoins, |
2196 | &joinSize[joinphase], |
2197 | LEFT_END1, k, prevphase, RIGHT_END0, nextk, iphase); |
2198 | arc->join = arcs[prevphase].njoins; |
2199 | } |
2200 | } |
2201 | else { |
2202 | /* |
2203 | * cap the left end of this arc |
2204 | * unless it joins itself |
2205 | */ |
2206 | if ((prevphase == 0 || isDoubleDash) && !arc->selfJoin) { |
2207 | addCap(&arcs[prevphase].caps, &arcs[prevphase].ncaps, |
2208 | &capSize[prevphase], LEFT_END1, k); |
2209 | arc->cap = arcs[prevphase].ncaps; |
2210 | } |
2211 | if (isDashed && !arcsJoin) { |
2212 | iDash = iDashStart; |
2213 | iphase = iphaseStart; |
2214 | dashRemaining = dashRemainingStart; |
2215 | } |
2216 | nextk = arcs[iphase].narcs; |
2217 | if (nexti == start) { |
2218 | nextk = 0; |
2219 | iDash = iDashStart; |
2220 | iphase = iphaseStart; |
2221 | dashRemaining = dashRemainingStart; |
2222 | } |
2223 | /* |
2224 | * cap the right end of the next arc. If the |
2225 | * next arc is actually the first arc, only |
2226 | * cap it if it joins with this arc. This |
2227 | * case will occur when the final dash segment |
2228 | * of an on/off dash is off. Of course, this |
2229 | * cap will be drawn at a strange time, but that |
2230 | * hardly matters... |
2231 | */ |
2232 | if ((iphase == 0 || isDoubleDash) && |
2233 | (nexti != start || (arcsJoin && isDashed))) |
2234 | addCap(&arcs[iphase].caps, &arcs[iphase].ncaps, |
2235 | &capSize[iphase], RIGHT_END0, nextk); |
2236 | } |
2237 | i = nexti; |
2238 | if (i == start) |
2239 | break; |
2240 | } |
2241 | /* |
2242 | * make sure the last section is rendered |
2243 | */ |
2244 | for (iphase = 0; iphase < (isDoubleDash ? 2 : 1); iphase++) |
2245 | if (arcs[iphase].narcs > 0) { |
2246 | arcs[iphase].arcs[arcs[iphase].narcs - 1].render = 1; |
2247 | arcs[iphase].arcs[arcs[iphase].narcs - 1].join = |
2248 | arcs[iphase].njoins; |
2249 | arcs[iphase].arcs[arcs[iphase].narcs - 1].cap = arcs[iphase].ncaps; |
2250 | } |
2251 | free(data); |
2252 | return arcs; |
2253 | arcfail: |
2254 | miFreeArcs(arcs, pGC); |
2255 | free(data); |
2256 | return NULL((void*)0); |
2257 | } |
2258 | |
2259 | static double |
2260 | angleToLength(int angle, dashMap * map) |
2261 | { |
2262 | double len, excesslen, sidelen = map->map[DASH_MAP_SIZE91 - 1], totallen; |
2263 | int di; |
2264 | int excess; |
2265 | Bool oddSide = FALSE0; |
2266 | |
2267 | totallen = 0; |
2268 | if (angle >= 0) { |
2269 | while (angle >= 90 * 64) { |
2270 | angle -= 90 * 64; |
2271 | totallen += sidelen; |
2272 | oddSide = !oddSide; |
2273 | } |
2274 | } |
2275 | else { |
2276 | while (angle < 0) { |
2277 | angle += 90 * 64; |
2278 | totallen -= sidelen; |
2279 | oddSide = !oddSide; |
2280 | } |
2281 | } |
2282 | if (oddSide) |
2283 | angle = 90 * 64 - angle; |
2284 | |
2285 | di = xAngleToDashIndex(angle)((((long) (angle)) * (91 - 1)) / (90 * 64)); |
2286 | excess = angle - dashIndexToXAngle(di)((((long) (di)) * (90 * 64)) / (91 - 1)); |
2287 | |
2288 | len = map->map[di]; |
2289 | /* |
2290 | * linearly interpolate between this point and the next |
2291 | */ |
2292 | if (excess > 0) { |
2293 | excesslen = (map->map[di + 1] - map->map[di]) * |
2294 | ((double) excess) / dashXAngleStep(((double) (90 * 64)) / ((double) (91 - 1))); |
2295 | len += excesslen; |
2296 | } |
2297 | if (oddSide) |
2298 | totallen += (sidelen - len); |
2299 | else |
2300 | totallen += len; |
2301 | return totallen; |
2302 | } |
2303 | |
2304 | /* |
2305 | * len is along the arc, but may be more than one rotation |
2306 | */ |
2307 | |
2308 | static int |
2309 | lengthToAngle(double len, dashMap * map) |
2310 | { |
2311 | double sidelen = map->map[DASH_MAP_SIZE91 - 1]; |
2312 | int angle, angleexcess; |
2313 | Bool oddSide = FALSE0; |
2314 | int a0, a1, a; |
2315 | |
2316 | angle = 0; |
2317 | /* |
2318 | * step around the ellipse, subtracting sidelens and |
2319 | * adding 90 degrees. oddSide will tell if the |
2320 | * map should be interpolated in reverse |
2321 | */ |
2322 | if (len >= 0) { |
2323 | if (sidelen == 0) |
2324 | return 2 * FULLCIRCLE(360 * 64); /* infinity */ |
2325 | while (len >= sidelen) { |
2326 | angle += 90 * 64; |
2327 | len -= sidelen; |
2328 | oddSide = !oddSide; |
2329 | } |
2330 | } |
2331 | else { |
2332 | if (sidelen == 0) |
2333 | return -2 * FULLCIRCLE(360 * 64); /* infinity */ |
2334 | while (len < 0) { |
2335 | angle -= 90 * 64; |
2336 | len += sidelen; |
2337 | oddSide = !oddSide; |
2338 | } |
2339 | } |
2340 | if (oddSide) |
2341 | len = sidelen - len; |
2342 | a0 = 0; |
2343 | a1 = DASH_MAP_SIZE91 - 1; |
2344 | /* |
2345 | * binary search for the closest pre-computed length |
2346 | */ |
2347 | while (a1 - a0 > 1) { |
2348 | a = (a0 + a1) / 2; |
2349 | if (len > map->map[a]) |
2350 | a0 = a; |
2351 | else |
2352 | a1 = a; |
2353 | } |
2354 | angleexcess = dashIndexToXAngle(a0)((((long) (a0)) * (90 * 64)) / (91 - 1)); |
2355 | /* |
2356 | * linearly interpolate to the next point |
2357 | */ |
2358 | angleexcess += (len - map->map[a0]) / |
2359 | (map->map[a0 + 1] - map->map[a0]) * dashXAngleStep(((double) (90 * 64)) / ((double) (91 - 1))); |
2360 | if (oddSide) |
2361 | angle += (90 * 64) - angleexcess; |
2362 | else |
2363 | angle += angleexcess; |
2364 | return angle; |
2365 | } |
2366 | |
2367 | /* |
2368 | * compute the angle of an ellipse which cooresponds to |
2369 | * the given path length. Note that the correct solution |
2370 | * to this problem is an eliptic integral, we'll punt and |
2371 | * approximate (it's only for dashes anyway). This |
2372 | * approximation uses a polygon. |
2373 | * |
2374 | * The remaining portion of len is stored in *lenp - |
2375 | * this will be negative if the arc extends beyond |
2376 | * len and positive if len extends beyond the arc. |
2377 | */ |
2378 | |
2379 | static int |
2380 | computeAngleFromPath(int startAngle, int endAngle, /* normalized absolute angles in *64 degrees */ |
2381 | dashMap * map, int *lenp, int backwards) |
2382 | { |
2383 | int a0, a1, a; |
2384 | double len0; |
2385 | int len; |
2386 | |
2387 | a0 = startAngle; |
2388 | a1 = endAngle; |
2389 | len = *lenp; |
2390 | if (backwards) { |
2391 | /* |
2392 | * flip the problem around to always be |
2393 | * forwards |
2394 | */ |
2395 | a0 = FULLCIRCLE(360 * 64) - a0; |
2396 | a1 = FULLCIRCLE(360 * 64) - a1; |
2397 | } |
2398 | if (a1 < a0) |
2399 | a1 += FULLCIRCLE(360 * 64); |
2400 | len0 = angleToLength(a0, map); |
2401 | a = lengthToAngle(len0 + len, map); |
2402 | if (a > a1) { |
2403 | a = a1; |
2404 | len -= angleToLength(a1, map) - len0; |
2405 | } |
2406 | else |
2407 | len = 0; |
2408 | if (backwards) |
2409 | a = FULLCIRCLE(360 * 64) - a; |
2410 | *lenp = len; |
2411 | return a; |
2412 | } |
2413 | |
2414 | /* |
2415 | * scan convert wide arcs. |
2416 | */ |
2417 | |
2418 | /* |
2419 | * draw zero width/height arcs |
2420 | */ |
2421 | |
2422 | static void |
2423 | drawZeroArc(DrawablePtr pDraw, |
2424 | GCPtr pGC, |
2425 | xArc * tarc, int lw, miArcFacePtr left, miArcFacePtr right) |
2426 | { |
2427 | double x0 = 0.0, y0 = 0.0, x1 = 0.0, y1 = 0.0, w, h, x, y; |
2428 | double xmax, ymax, xmin, ymin; |
2429 | int a0, a1; |
2430 | double a, startAngle, endAngle; |
2431 | double l, lx, ly; |
2432 | |
2433 | l = lw / 2.0; |
2434 | a0 = tarc->angle1; |
2435 | a1 = tarc->angle2; |
2436 | if (a1 > FULLCIRCLE(360 * 64)) |
2437 | a1 = FULLCIRCLE(360 * 64); |
2438 | else if (a1 < -FULLCIRCLE(360 * 64)) |
2439 | a1 = -FULLCIRCLE(360 * 64); |
2440 | w = (double) tarc->width / 2.0; |
2441 | h = (double) tarc->height / 2.0; |
2442 | /* |
2443 | * play in X coordinates right away |
2444 | */ |
2445 | startAngle = -((double) a0 / 64.0); |
2446 | endAngle = -((double) (a0 + a1) / 64.0); |
2447 | |
2448 | xmax = -w; |
2449 | xmin = w; |
2450 | ymax = -h; |
2451 | ymin = h; |
2452 | a = startAngle; |
2453 | for (;;) { |
2454 | x = w * miDcos(a); |
2455 | y = h * miDsin(a); |
2456 | if (a == startAngle) { |
2457 | x0 = x; |
2458 | y0 = y; |
2459 | } |
2460 | if (a == endAngle) { |
2461 | x1 = x; |
2462 | y1 = y; |
2463 | } |
2464 | if (x > xmax) |
2465 | xmax = x; |
2466 | if (x < xmin) |
2467 | xmin = x; |
2468 | if (y > ymax) |
2469 | ymax = y; |
2470 | if (y < ymin) |
2471 | ymin = y; |
2472 | if (a == endAngle) |
2473 | break; |
2474 | if (a1 < 0) { /* clockwise */ |
2475 | if (floor(a / 90.0) == floor(endAngle / 90.0)) |
2476 | a = endAngle; |
2477 | else |
2478 | a = 90 * (floor(a / 90.0) + 1); |
2479 | } |
2480 | else { |
2481 | if (ceil(a / 90.0) == ceil(endAngle / 90.0)) |
2482 | a = endAngle; |
2483 | else |
2484 | a = 90 * (ceil(a / 90.0) - 1); |
2485 | } |
2486 | } |
2487 | lx = ly = l; |
2488 | if ((x1 - x0) + (y1 - y0) < 0) |
2489 | lx = ly = -l; |
2490 | if (h) { |
2491 | ly = 0.0; |
2492 | lx = -lx; |
2493 | } |
2494 | else |
2495 | lx = 0.0; |
2496 | if (right) { |
2497 | right->center.x = x0; |
2498 | right->center.y = y0; |
2499 | right->clock.x = x0 - lx; |
2500 | right->clock.y = y0 - ly; |
2501 | right->counterClock.x = x0 + lx; |
2502 | right->counterClock.y = y0 + ly; |
2503 | } |
2504 | if (left) { |
2505 | left->center.x = x1; |
2506 | left->center.y = y1; |
2507 | left->clock.x = x1 + lx; |
2508 | left->clock.y = y1 + ly; |
2509 | left->counterClock.x = x1 - lx; |
2510 | left->counterClock.y = y1 - ly; |
2511 | } |
2512 | |
2513 | x0 = xmin; |
2514 | x1 = xmax; |
2515 | y0 = ymin; |
Value stored to 'y0' is never read | |
2516 | y1 = ymax; |
2517 | if (ymin != y1) { |
2518 | xmin = -l; |
2519 | xmax = l; |
2520 | } |
2521 | else { |
2522 | ymin = -l; |
2523 | ymax = l; |
2524 | } |
2525 | if (xmax != xmin && ymax != ymin) { |
2526 | int minx, maxx, miny, maxy; |
2527 | xRectangle rect; |
2528 | |
2529 | minx = ICEIL(xmin + w) + tarc->x; |
2530 | maxx = ICEIL(xmax + w) + tarc->x; |
2531 | miny = ICEIL(ymin + h) + tarc->y; |
2532 | maxy = ICEIL(ymax + h) + tarc->y; |
2533 | rect.x = minx; |
2534 | rect.y = miny; |
2535 | rect.width = maxx - minx; |
2536 | rect.height = maxy - miny; |
2537 | (*pGC->ops->PolyFillRect) (pDraw, pGC, 1, &rect); |
2538 | } |
2539 | } |
2540 | |
2541 | /* |
2542 | * this computes the ellipse y value associated with the |
2543 | * bottom of the tail. |
2544 | */ |
2545 | |
2546 | static void |
2547 | tailEllipseY(struct arc_def *def, struct accelerators *acc) |
2548 | { |
2549 | double t; |
2550 | |
2551 | acc->tail_y = 0.0; |
2552 | if (def->w == def->h) |
2553 | return; |
2554 | t = def->l * def->w; |
2555 | if (def->w > def->h) { |
2556 | if (t < acc->h2) |
2557 | return; |
2558 | } |
2559 | else { |
2560 | if (t > acc->h2) |
2561 | return; |
2562 | } |
2563 | t = 2.0 * def->h * t; |
2564 | t = (CUBED_ROOT_41.5874010519681993173435330390930175781250 * acc->h2 - cbrt(t * t)) / acc->h2mw2; |
2565 | if (t > 0.0) |
2566 | acc->tail_y = def->h / CUBED_ROOT_21.2599210498948732038115849718451499938964 * sqrt(t); |
2567 | } |
2568 | |
2569 | /* |
2570 | * inverse functions -- compute edge coordinates |
2571 | * from the ellipse |
2572 | */ |
2573 | |
2574 | static double |
2575 | outerXfromXY(double x, double y, struct arc_def *def, struct accelerators *acc) |
2576 | { |
2577 | return x + (x * acc->h2l) / sqrt(x * x * acc->h4 + y * y * acc->w4); |
2578 | } |
2579 | |
2580 | static double |
2581 | outerYfromXY(double x, double y, struct arc_def *def, struct accelerators *acc) |
2582 | { |
2583 | return y + (y * acc->w2l) / sqrt(x * x * acc->h4 + y * y * acc->w4); |
2584 | } |
2585 | |
2586 | static double |
2587 | innerXfromXY(double x, double y, struct arc_def *def, struct accelerators *acc) |
2588 | { |
2589 | return x - (x * acc->h2l) / sqrt(x * x * acc->h4 + y * y * acc->w4); |
2590 | } |
2591 | |
2592 | static double |
2593 | innerYfromXY(double x, double y, struct arc_def *def, struct accelerators *acc) |
2594 | { |
2595 | return y - (y * acc->w2l) / sqrt(x * x * acc->h4 + y * y * acc->w4); |
2596 | } |
2597 | |
2598 | static double |
2599 | innerYfromY(double y, struct arc_def *def, struct accelerators *acc) |
2600 | { |
2601 | double x; |
2602 | |
2603 | x = (def->w / def->h) * sqrt(acc->h2 - y * y); |
2604 | |
2605 | return y - (y * acc->w2l) / sqrt(x * x * acc->h4 + y * y * acc->w4); |
2606 | } |
2607 | |
2608 | static void |
2609 | computeLine(double x1, double y1, double x2, double y2, struct line *line) |
2610 | { |
2611 | if (y1 == y2) |
2612 | line->valid = 0; |
2613 | else { |
2614 | line->m = (x1 - x2) / (y1 - y2); |
2615 | line->b = x1 - y1 * line->m; |
2616 | line->valid = 1; |
2617 | } |
2618 | } |
2619 | |
2620 | /* |
2621 | * compute various accelerators for an ellipse. These |
2622 | * are simply values that are used repeatedly in |
2623 | * the computations |
2624 | */ |
2625 | |
2626 | static void |
2627 | computeAcc(xArc * tarc, int lw, struct arc_def *def, struct accelerators *acc) |
2628 | { |
2629 | def->w = ((double) tarc->width) / 2.0; |
2630 | def->h = ((double) tarc->height) / 2.0; |
2631 | def->l = ((double) lw) / 2.0; |
2632 | acc->h2 = def->h * def->h; |
2633 | acc->w2 = def->w * def->w; |
2634 | acc->h4 = acc->h2 * acc->h2; |
2635 | acc->w4 = acc->w2 * acc->w2; |
2636 | acc->h2l = acc->h2 * def->l; |
2637 | acc->w2l = acc->w2 * def->l; |
2638 | acc->h2mw2 = acc->h2 - acc->w2; |
2639 | acc->fromIntX = (tarc->width & 1) ? 0.5 : 0.0; |
2640 | acc->fromIntY = (tarc->height & 1) ? 0.5 : 0.0; |
2641 | acc->xorg = tarc->x + (tarc->width >> 1); |
2642 | acc->yorgu = tarc->y + (tarc->height >> 1); |
2643 | acc->yorgl = acc->yorgu + (tarc->height & 1); |
2644 | tailEllipseY(def, acc); |
2645 | } |
2646 | |
2647 | /* |
2648 | * compute y value bounds of various portions of the arc, |
2649 | * the outer edge, the ellipse and the inner edge. |
2650 | */ |
2651 | |
2652 | static void |
2653 | computeBound(struct arc_def *def, |
2654 | struct arc_bound *bound, |
2655 | struct accelerators *acc, miArcFacePtr right, miArcFacePtr left) |
2656 | { |
2657 | double t; |
2658 | double innerTaily; |
2659 | double tail_y; |
2660 | struct bound innerx, outerx; |
2661 | struct bound ellipsex; |
2662 | |
2663 | bound->ellipse.min = Dsin(def->a0)((def->a0) == 0.0 ? 0.0 : ((def->a0) == 90.0 ? 1.0 : sin (def->a0*3.14159265358979323846264338327950288/180.0))) * def->h; |
2664 | bound->ellipse.max = Dsin(def->a1)((def->a1) == 0.0 ? 0.0 : ((def->a1) == 90.0 ? 1.0 : sin (def->a1*3.14159265358979323846264338327950288/180.0))) * def->h; |
2665 | if (def->a0 == 45 && def->w == def->h) |
2666 | ellipsex.min = bound->ellipse.min; |
2667 | else |
2668 | ellipsex.min = Dcos(def->a0)((def->a0) == 0.0 ? 1.0 : ((def->a0) == 90.0 ? 0.0 : cos (def->a0*3.14159265358979323846264338327950288/180.0))) * def->w; |
2669 | if (def->a1 == 45 && def->w == def->h) |
2670 | ellipsex.max = bound->ellipse.max; |
2671 | else |
2672 | ellipsex.max = Dcos(def->a1)((def->a1) == 0.0 ? 1.0 : ((def->a1) == 90.0 ? 0.0 : cos (def->a1*3.14159265358979323846264338327950288/180.0))) * def->w; |
2673 | bound->outer.min = outerYfromXY(ellipsex.min, bound->ellipse.min, def, acc); |
2674 | bound->outer.max = outerYfromXY(ellipsex.max, bound->ellipse.max, def, acc); |
2675 | bound->inner.min = innerYfromXY(ellipsex.min, bound->ellipse.min, def, acc); |
2676 | bound->inner.max = innerYfromXY(ellipsex.max, bound->ellipse.max, def, acc); |
2677 | |
2678 | outerx.min = outerXfromXY(ellipsex.min, bound->ellipse.min, def, acc); |
2679 | outerx.max = outerXfromXY(ellipsex.max, bound->ellipse.max, def, acc); |
2680 | innerx.min = innerXfromXY(ellipsex.min, bound->ellipse.min, def, acc); |
2681 | innerx.max = innerXfromXY(ellipsex.max, bound->ellipse.max, def, acc); |
2682 | |
2683 | /* |
2684 | * save the line end points for the |
2685 | * cap code to use. Careful here, these are |
2686 | * in cartesean coordinates (y increasing upwards) |
2687 | * while the cap code uses inverted coordinates |
2688 | * (y increasing downwards) |
2689 | */ |
2690 | |
2691 | if (right) { |
2692 | right->counterClock.y = bound->outer.min; |
2693 | right->counterClock.x = outerx.min; |
2694 | right->center.y = bound->ellipse.min; |
2695 | right->center.x = ellipsex.min; |
2696 | right->clock.y = bound->inner.min; |
2697 | right->clock.x = innerx.min; |
2698 | } |
2699 | |
2700 | if (left) { |
2701 | left->clock.y = bound->outer.max; |
2702 | left->clock.x = outerx.max; |
2703 | left->center.y = bound->ellipse.max; |
2704 | left->center.x = ellipsex.max; |
2705 | left->counterClock.y = bound->inner.max; |
2706 | left->counterClock.x = innerx.max; |
2707 | } |
2708 | |
2709 | bound->left.min = bound->inner.max; |
2710 | bound->left.max = bound->outer.max; |
2711 | bound->right.min = bound->inner.min; |
2712 | bound->right.max = bound->outer.min; |
2713 | |
2714 | computeLine(innerx.min, bound->inner.min, outerx.min, bound->outer.min, |
2715 | &acc->right); |
2716 | computeLine(innerx.max, bound->inner.max, outerx.max, bound->outer.max, |
2717 | &acc->left); |
2718 | |
2719 | if (bound->inner.min > bound->inner.max) { |
2720 | t = bound->inner.min; |
2721 | bound->inner.min = bound->inner.max; |
2722 | bound->inner.max = t; |
2723 | } |
2724 | tail_y = acc->tail_y; |
2725 | if (tail_y > bound->ellipse.max) |
2726 | tail_y = bound->ellipse.max; |
2727 | else if (tail_y < bound->ellipse.min) |
2728 | tail_y = bound->ellipse.min; |
2729 | innerTaily = innerYfromY(tail_y, def, acc); |
2730 | if (bound->inner.min > innerTaily) |
2731 | bound->inner.min = innerTaily; |
2732 | if (bound->inner.max < innerTaily) |
2733 | bound->inner.max = innerTaily; |
2734 | bound->inneri.min = ICEIL(bound->inner.min - acc->fromIntY); |
2735 | bound->inneri.max = floor(bound->inner.max - acc->fromIntY); |
2736 | bound->outeri.min = ICEIL(bound->outer.min - acc->fromIntY); |
2737 | bound->outeri.max = floor(bound->outer.max - acc->fromIntY); |
2738 | } |
2739 | |
2740 | /* |
2741 | * this section computes the x value of the span at y |
2742 | * intersected with the specified face of the ellipse. |
2743 | * |
2744 | * this is the min/max X value over the set of normal |
2745 | * lines to the entire ellipse, the equation of the |
2746 | * normal lines is: |
2747 | * |
2748 | * ellipse_x h^2 h^2 |
2749 | * x = ------------ y + ellipse_x (1 - --- ) |
2750 | * ellipse_y w^2 w^2 |
2751 | * |
2752 | * compute the derivative with-respect-to ellipse_y and solve |
2753 | * for zero: |
2754 | * |
2755 | * (w^2 - h^2) ellipse_y^3 + h^4 y |
2756 | * 0 = - ---------------------------------- |
2757 | * h w ellipse_y^2 sqrt (h^2 - ellipse_y^2) |
2758 | * |
2759 | * ( h^4 y ) |
2760 | * ellipse_y = ( ---------- ) ^ (1/3) |
2761 | * ( (h^2 - w^2) ) |
2762 | * |
2763 | * The other two solutions to the equation are imaginary. |
2764 | * |
2765 | * This gives the position on the ellipse which generates |
2766 | * the normal with the largest/smallest x intersection point. |
2767 | * |
2768 | * Now compute the second derivative to check whether |
2769 | * the intersection is a minimum or maximum: |
2770 | * |
2771 | * h (y0^3 (w^2 - h^2) + h^2 y (3y0^2 - 2h^2)) |
2772 | * - ------------------------------------------- |
2773 | * w y0^3 (sqrt (h^2 - y^2)) ^ 3 |
2774 | * |
2775 | * as we only care about the sign, |
2776 | * |
2777 | * - (y0^3 (w^2 - h^2) + h^2 y (3y0^2 - 2h^2)) |
2778 | * |
2779 | * or (to use accelerators), |
2780 | * |
2781 | * y0^3 (h^2 - w^2) - h^2 y (3y0^2 - 2h^2) |
2782 | * |
2783 | */ |
2784 | |
2785 | /* |
2786 | * computes the position on the ellipse whose normal line |
2787 | * intersects the given scan line maximally |
2788 | */ |
2789 | |
2790 | static double |
2791 | hookEllipseY(double scan_y, |
2792 | struct arc_bound *bound, struct accelerators *acc, int left) |
2793 | { |
2794 | double ret; |
2795 | |
2796 | if (acc->h2mw2 == 0) { |
2797 | if ((scan_y > 0 && !left) || (scan_y < 0 && left)) |
2798 | return bound->ellipse.min; |
2799 | return bound->ellipse.max; |
2800 | } |
2801 | ret = (acc->h4 * scan_y) / (acc->h2mw2); |
2802 | if (ret >= 0) |
2803 | return cbrt(ret); |
2804 | else |
2805 | return -cbrt(-ret); |
2806 | } |
2807 | |
2808 | /* |
2809 | * computes the X value of the intersection of the |
2810 | * given scan line with the right side of the lower hook |
2811 | */ |
2812 | |
2813 | static double |
2814 | hookX(double scan_y, |
2815 | struct arc_def *def, |
2816 | struct arc_bound *bound, struct accelerators *acc, int left) |
2817 | { |
2818 | double ellipse_y, x; |
2819 | double maxMin; |
2820 | |
2821 | if (def->w != def->h) { |
2822 | ellipse_y = hookEllipseY(scan_y, bound, acc, left); |
2823 | if (boundedLe(ellipse_y, bound->ellipse)((bound->ellipse).min <= (ellipse_y) && (ellipse_y ) <= (bound->ellipse).max)) { |
2824 | /* |
2825 | * compute the value of the second |
2826 | * derivative |
2827 | */ |
2828 | maxMin = ellipse_y * ellipse_y * ellipse_y * acc->h2mw2 - |
2829 | acc->h2 * scan_y * (3 * ellipse_y * ellipse_y - 2 * acc->h2); |
2830 | if ((left && maxMin > 0) || (!left && maxMin < 0)) { |
2831 | if (ellipse_y == 0) |
2832 | return def->w + left ? -def->l : def->l; |
2833 | x = (acc->h2 * scan_y - ellipse_y * acc->h2mw2) * |
2834 | sqrt(acc->h2 - ellipse_y * ellipse_y) / |
2835 | (def->h * def->w * ellipse_y); |
2836 | return x; |
2837 | } |
2838 | } |
2839 | } |
2840 | if (left) { |
2841 | if (acc->left.valid && boundedLe(scan_y, bound->left)((bound->left).min <= (scan_y) && (scan_y) <= (bound->left).max)) { |
2842 | x = intersectLine(scan_y, acc->left)(acc->left.m * (scan_y) + acc->left.b); |
2843 | } |
2844 | else { |
2845 | if (acc->right.valid) |
2846 | x = intersectLine(scan_y, acc->right)(acc->right.m * (scan_y) + acc->right.b); |
2847 | else |
2848 | x = def->w - def->l; |
2849 | } |
2850 | } |
2851 | else { |
2852 | if (acc->right.valid && boundedLe(scan_y, bound->right)((bound->right).min <= (scan_y) && (scan_y) <= (bound->right).max)) { |
2853 | x = intersectLine(scan_y, acc->right)(acc->right.m * (scan_y) + acc->right.b); |
2854 | } |
2855 | else { |
2856 | if (acc->left.valid) |
2857 | x = intersectLine(scan_y, acc->left)(acc->left.m * (scan_y) + acc->left.b); |
2858 | else |
2859 | x = def->w - def->l; |
2860 | } |
2861 | } |
2862 | return x; |
2863 | } |
2864 | |
2865 | /* |
2866 | * generate the set of spans with |
2867 | * the given y coordinate |
2868 | */ |
2869 | |
2870 | static void |
2871 | arcSpan(int y, |
2872 | int lx, |
2873 | int lw, |
2874 | int rx, |
2875 | int rw, |
2876 | struct arc_def *def, |
2877 | struct arc_bound *bounds, struct accelerators *acc, int mask) |
2878 | { |
2879 | int linx, loutx, rinx, routx; |
2880 | double x, altx; |
2881 | |
2882 | if (boundedLe(y, bounds->inneri)((bounds->inneri).min <= (y) && (y) <= (bounds ->inneri).max)) { |
2883 | linx = -(lx + lw); |
2884 | rinx = rx; |
2885 | } |
2886 | else { |
2887 | /* |
2888 | * intersection with left face |
2889 | */ |
2890 | x = hookX(y + acc->fromIntY, def, bounds, acc, 1); |
2891 | if (acc->right.valid && boundedLe(y + acc->fromIntY, bounds->right)((bounds->right).min <= (y + acc->fromIntY) && (y + acc->fromIntY) <= (bounds->right).max)) { |
2892 | altx = intersectLine(y + acc->fromIntY, acc->right)(acc->right.m * (y + acc->fromIntY) + acc->right.b); |
2893 | if (altx < x) |
2894 | x = altx; |
2895 | } |
2896 | linx = -ICEIL(acc->fromIntX - x); |
2897 | rinx = ICEIL(acc->fromIntX + x); |
2898 | } |
2899 | if (boundedLe(y, bounds->outeri)((bounds->outeri).min <= (y) && (y) <= (bounds ->outeri).max)) { |
2900 | loutx = -lx; |
2901 | routx = rx + rw; |
2902 | } |
2903 | else { |
2904 | /* |
2905 | * intersection with right face |
2906 | */ |
2907 | x = hookX(y + acc->fromIntY, def, bounds, acc, 0); |
2908 | if (acc->left.valid && boundedLe(y + acc->fromIntY, bounds->left)((bounds->left).min <= (y + acc->fromIntY) && (y + acc->fromIntY) <= (bounds->left).max)) { |
2909 | altx = x; |
2910 | x = intersectLine(y + acc->fromIntY, acc->left)(acc->left.m * (y + acc->fromIntY) + acc->left.b); |
2911 | if (x < altx) |
2912 | x = altx; |
2913 | } |
2914 | loutx = -ICEIL(acc->fromIntX - x); |
2915 | routx = ICEIL(acc->fromIntX + x); |
2916 | } |
2917 | if (routx > rinx) { |
2918 | if (mask & 1) |
2919 | newFinalSpan(acc->yorgu - y, acc->xorg + rinx, acc->xorg + routx); |
2920 | if (mask & 8) |
2921 | newFinalSpan(acc->yorgl + y, acc->xorg + rinx, acc->xorg + routx); |
2922 | } |
2923 | if (loutx > linx) { |
2924 | if (mask & 2) |
2925 | newFinalSpan(acc->yorgu - y, acc->xorg - loutx, acc->xorg - linx); |
2926 | if (mask & 4) |
2927 | newFinalSpan(acc->yorgl + y, acc->xorg - loutx, acc->xorg - linx); |
2928 | } |
2929 | } |
2930 | |
2931 | static void |
2932 | arcSpan0(int lx, |
2933 | int lw, |
2934 | int rx, |
2935 | int rw, |
2936 | struct arc_def *def, |
2937 | struct arc_bound *bounds, struct accelerators *acc, int mask) |
2938 | { |
2939 | double x; |
2940 | |
2941 | if (boundedLe(0, bounds->inneri)((bounds->inneri).min <= (0) && (0) <= (bounds ->inneri).max) && |
2942 | acc->left.valid && boundedLe(0, bounds->left)((bounds->left).min <= (0) && (0) <= (bounds ->left).max) && acc->left.b > 0) { |
2943 | x = def->w - def->l; |
2944 | if (acc->left.b < x) |
2945 | x = acc->left.b; |
2946 | lw = ICEIL(acc->fromIntX - x) - lx; |
2947 | rw += rx; |
2948 | rx = ICEIL(acc->fromIntX + x); |
2949 | rw -= rx; |
2950 | } |
2951 | arcSpan(0, lx, lw, rx, rw, def, bounds, acc, mask); |
2952 | } |
2953 | |
2954 | static void |
2955 | tailSpan(int y, |
2956 | int lw, |
2957 | int rw, |
2958 | struct arc_def *def, |
2959 | struct arc_bound *bounds, struct accelerators *acc, int mask) |
2960 | { |
2961 | double yy, xalt, x, lx, rx; |
2962 | int n; |
2963 | |
2964 | if (boundedLe(y, bounds->outeri)((bounds->outeri).min <= (y) && (y) <= (bounds ->outeri).max)) |
2965 | arcSpan(y, 0, lw, -rw, rw, def, bounds, acc, mask); |
2966 | else if (def->w != def->h) { |
2967 | yy = y + acc->fromIntY; |
2968 | x = tailX(yy, def, bounds, acc); |
2969 | if (yy == 0.0 && x == -rw - acc->fromIntX) |
2970 | return; |
2971 | if (acc->right.valid && boundedLe(yy, bounds->right)((bounds->right).min <= (yy) && (yy) <= (bounds ->right).max)) { |
2972 | rx = x; |
2973 | lx = -x; |
2974 | xalt = intersectLine(yy, acc->right)(acc->right.m * (yy) + acc->right.b); |
2975 | if (xalt >= -rw - acc->fromIntX && xalt <= rx) |
2976 | rx = xalt; |
2977 | n = ICEIL(acc->fromIntX + lx); |
2978 | if (lw > n) { |
2979 | if (mask & 2) |
2980 | newFinalSpan(acc->yorgu - y, acc->xorg + n, acc->xorg + lw); |
2981 | if (mask & 4) |
2982 | newFinalSpan(acc->yorgl + y, acc->xorg + n, acc->xorg + lw); |
2983 | } |
2984 | n = ICEIL(acc->fromIntX + rx); |
2985 | if (n > -rw) { |
2986 | if (mask & 1) |
2987 | newFinalSpan(acc->yorgu - y, acc->xorg - rw, acc->xorg + n); |
2988 | if (mask & 8) |
2989 | newFinalSpan(acc->yorgl + y, acc->xorg - rw, acc->xorg + n); |
2990 | } |
2991 | } |
2992 | arcSpan(y, |
2993 | ICEIL(acc->fromIntX - x), 0, |
2994 | ICEIL(acc->fromIntX + x), 0, def, bounds, acc, mask); |
2995 | } |
2996 | } |
2997 | |
2998 | /* |
2999 | * create whole arcs out of pieces. This code is |
3000 | * very bad. |
3001 | */ |
3002 | |
3003 | static struct finalSpan **finalSpans = NULL((void*)0); |
3004 | static int finalMiny = 0, finalMaxy = -1; |
3005 | static int finalSize = 0; |
3006 | |
3007 | static int nspans = 0; /* total spans, not just y coords */ |
3008 | |
3009 | struct finalSpan { |
3010 | struct finalSpan *next; |
3011 | int min, max; /* x values */ |
3012 | }; |
3013 | |
3014 | static struct finalSpan *freeFinalSpans, *tmpFinalSpan; |
3015 | |
3016 | #define allocFinalSpan()(freeFinalSpans ? ((tmpFinalSpan = freeFinalSpans), (freeFinalSpans = freeFinalSpans->next), (tmpFinalSpan->next = 0), tmpFinalSpan ) : realAllocSpan ()) (freeFinalSpans ?\ |
3017 | ((tmpFinalSpan = freeFinalSpans), \ |
3018 | (freeFinalSpans = freeFinalSpans->next), \ |
3019 | (tmpFinalSpan->next = 0), \ |
3020 | tmpFinalSpan) : \ |
3021 | realAllocSpan ()) |
3022 | |
3023 | #define SPAN_CHUNK_SIZE128 128 |
3024 | |
3025 | struct finalSpanChunk { |
3026 | struct finalSpan data[SPAN_CHUNK_SIZE128]; |
3027 | struct finalSpanChunk *next; |
3028 | }; |
3029 | |
3030 | static struct finalSpanChunk *chunks; |
3031 | |
3032 | static struct finalSpan * |
3033 | realAllocSpan(void) |
3034 | { |
3035 | struct finalSpanChunk *newChunk; |
3036 | struct finalSpan *span; |
3037 | int i; |
3038 | |
3039 | newChunk = malloc(sizeof(struct finalSpanChunk)); |
3040 | if (!newChunk) |
3041 | return (struct finalSpan *) NULL((void*)0); |
3042 | newChunk->next = chunks; |
3043 | chunks = newChunk; |
3044 | freeFinalSpans = span = newChunk->data + 1; |
3045 | for (i = 1; i < SPAN_CHUNK_SIZE128 - 1; i++) { |
3046 | span->next = span + 1; |
3047 | span++; |
3048 | } |
3049 | span->next = 0; |
3050 | span = newChunk->data; |
3051 | span->next = 0; |
3052 | return span; |
3053 | } |
3054 | |
3055 | static void |
3056 | disposeFinalSpans(void) |
3057 | { |
3058 | struct finalSpanChunk *chunk, *next; |
3059 | |
3060 | for (chunk = chunks; chunk; chunk = next) { |
3061 | next = chunk->next; |
3062 | free(chunk); |
3063 | } |
3064 | chunks = 0; |
3065 | freeFinalSpans = 0; |
3066 | free(finalSpans); |
3067 | finalSpans = 0; |
3068 | } |
3069 | |
3070 | static void |
3071 | fillSpans(DrawablePtr pDrawable, GCPtr pGC) |
3072 | { |
3073 | struct finalSpan *span; |
3074 | DDXPointPtr xSpan; |
3075 | int *xWidth; |
3076 | int i; |
3077 | struct finalSpan **f; |
3078 | int spany; |
3079 | DDXPointPtr xSpans; |
3080 | int *xWidths; |
3081 | |
3082 | if (nspans == 0) |
3083 | return; |
3084 | xSpan = xSpans = malloc(nspans * sizeof(DDXPointRec)); |
3085 | xWidth = xWidths = malloc(nspans * sizeof(int)); |
3086 | if (xSpans && xWidths) { |
3087 | i = 0; |
3088 | f = finalSpans; |
3089 | for (spany = finalMiny; spany <= finalMaxy; spany++, f++) { |
3090 | for (span = *f; span; span = span->next) { |
3091 | if (span->max <= span->min) |
3092 | continue; |
3093 | xSpan->x = span->min; |
3094 | xSpan->y = spany; |
3095 | ++xSpan; |
3096 | *xWidth++ = span->max - span->min; |
3097 | ++i; |
3098 | } |
3099 | } |
3100 | (*pGC->ops->FillSpans) (pDrawable, pGC, i, xSpans, xWidths, TRUE1); |
3101 | } |
3102 | disposeFinalSpans(); |
3103 | free(xSpans); |
3104 | free(xWidths); |
3105 | finalMiny = 0; |
3106 | finalMaxy = -1; |
3107 | finalSize = 0; |
3108 | nspans = 0; |
3109 | } |
3110 | |
3111 | #define SPAN_REALLOC100 100 |
3112 | |
3113 | #define findSpan(y)((finalMiny <= (y) && (y) <= finalMaxy) ? & finalSpans[(y) - finalMiny] : realFindSpan (y)) ((finalMiny <= (y) && (y) <= finalMaxy) ? \ |
3114 | &finalSpans[(y) - finalMiny] : \ |
3115 | realFindSpan (y)) |
3116 | |
3117 | static struct finalSpan ** |
3118 | realFindSpan(int y) |
3119 | { |
3120 | struct finalSpan **newSpans; |
3121 | int newSize, newMiny, newMaxy; |
3122 | int change; |
3123 | int i; |
3124 | |
3125 | if (y < finalMiny || y > finalMaxy) { |
3126 | if (!finalSize) { |
3127 | finalMiny = y; |
3128 | finalMaxy = y - 1; |
3129 | } |
3130 | if (y < finalMiny) |
3131 | change = finalMiny - y; |
3132 | else |
3133 | change = y - finalMaxy; |
3134 | if (change >= SPAN_REALLOC100) |
3135 | change += SPAN_REALLOC100; |
3136 | else |
3137 | change = SPAN_REALLOC100; |
3138 | newSize = finalSize + change; |
3139 | newSpans = malloc(newSize * sizeof(struct finalSpan *)); |
3140 | if (!newSpans) |
3141 | return NULL((void*)0); |
3142 | newMiny = finalMiny; |
3143 | newMaxy = finalMaxy; |
3144 | if (y < finalMiny) |
3145 | newMiny = finalMiny - change; |
3146 | else |
3147 | newMaxy = finalMaxy + change; |
3148 | if (finalSpans) { |
3149 | memmove(((char *) newSpans) +__builtin___memmove_chk (((char *) newSpans) + (finalMiny - newMiny ) * sizeof(struct finalSpan *), (char *) finalSpans, finalSize * sizeof(struct finalSpan *), __builtin_object_size (((char * ) newSpans) + (finalMiny - newMiny) * sizeof(struct finalSpan *), 0)) |
3150 | (finalMiny - newMiny) * sizeof(struct finalSpan *),__builtin___memmove_chk (((char *) newSpans) + (finalMiny - newMiny ) * sizeof(struct finalSpan *), (char *) finalSpans, finalSize * sizeof(struct finalSpan *), __builtin_object_size (((char * ) newSpans) + (finalMiny - newMiny) * sizeof(struct finalSpan *), 0)) |
3151 | (char *) finalSpans,__builtin___memmove_chk (((char *) newSpans) + (finalMiny - newMiny ) * sizeof(struct finalSpan *), (char *) finalSpans, finalSize * sizeof(struct finalSpan *), __builtin_object_size (((char * ) newSpans) + (finalMiny - newMiny) * sizeof(struct finalSpan *), 0)) |
3152 | finalSize * sizeof(struct finalSpan *))__builtin___memmove_chk (((char *) newSpans) + (finalMiny - newMiny ) * sizeof(struct finalSpan *), (char *) finalSpans, finalSize * sizeof(struct finalSpan *), __builtin_object_size (((char * ) newSpans) + (finalMiny - newMiny) * sizeof(struct finalSpan *), 0)); |
3153 | free(finalSpans); |
3154 | } |
3155 | if ((i = finalMiny - newMiny) > 0) |
3156 | memset((char *) newSpans, 0, i * sizeof(struct finalSpan *))__builtin___memset_chk ((char *) newSpans, 0, i * sizeof(struct finalSpan *), __builtin_object_size ((char *) newSpans, 0)); |
3157 | if ((i = newMaxy - finalMaxy) > 0) |
3158 | memset((char *) (newSpans + newSize - i), 0,__builtin___memset_chk ((char *) (newSpans + newSize - i), 0, i * sizeof(struct finalSpan *), __builtin_object_size ((char *) (newSpans + newSize - i), 0)) |
3159 | i * sizeof(struct finalSpan *))__builtin___memset_chk ((char *) (newSpans + newSize - i), 0, i * sizeof(struct finalSpan *), __builtin_object_size ((char *) (newSpans + newSize - i), 0)); |
3160 | finalSpans = newSpans; |
3161 | finalMaxy = newMaxy; |
3162 | finalMiny = newMiny; |
3163 | finalSize = newSize; |
3164 | } |
3165 | return &finalSpans[y - finalMiny]; |
3166 | } |
3167 | |
3168 | static void |
3169 | newFinalSpan(int y, int xmin, int xmax) |
3170 | { |
3171 | struct finalSpan *x; |
3172 | struct finalSpan **f; |
3173 | struct finalSpan *oldx; |
3174 | struct finalSpan *prev; |
3175 | |
3176 | f = findSpan(y)((finalMiny <= (y) && (y) <= finalMaxy) ? & finalSpans[(y) - finalMiny] : realFindSpan (y)); |
3177 | if (!f) |
3178 | return; |
3179 | oldx = 0; |
3180 | for (;;) { |
3181 | prev = 0; |
3182 | for (x = *f; x; x = x->next) { |
3183 | if (x == oldx) { |
3184 | prev = x; |
3185 | continue; |
3186 | } |
3187 | if (x->min <= xmax && xmin <= x->max) { |
3188 | if (oldx) { |
3189 | oldx->min = min(x->min, xmin)(((x->min) < (xmin)) ? (x->min) : (xmin)); |
3190 | oldx->max = max(x->max, xmax)(((x->max) > (xmax)) ? (x->max) : (xmax)); |
3191 | if (prev) |
3192 | prev->next = x->next; |
3193 | else |
3194 | *f = x->next; |
3195 | --nspans; |
3196 | } |
3197 | else { |
3198 | x->min = min(x->min, xmin)(((x->min) < (xmin)) ? (x->min) : (xmin)); |
3199 | x->max = max(x->max, xmax)(((x->max) > (xmax)) ? (x->max) : (xmax)); |
3200 | oldx = x; |
3201 | } |
3202 | xmin = oldx->min; |
3203 | xmax = oldx->max; |
3204 | break; |
3205 | } |
3206 | prev = x; |
3207 | } |
3208 | if (!x) |
3209 | break; |
3210 | } |
3211 | if (!oldx) { |
3212 | x = allocFinalSpan()(freeFinalSpans ? ((tmpFinalSpan = freeFinalSpans), (freeFinalSpans = freeFinalSpans->next), (tmpFinalSpan->next = 0), tmpFinalSpan ) : realAllocSpan ()); |
3213 | if (x) { |
3214 | x->min = xmin; |
3215 | x->max = xmax; |
3216 | x->next = *f; |
3217 | *f = x; |
3218 | ++nspans; |
3219 | } |
3220 | } |
3221 | } |
3222 | |
3223 | static void |
3224 | mirrorSppPoint(int quadrant, SppPointPtr sppPoint) |
3225 | { |
3226 | switch (quadrant) { |
3227 | case 0: |
3228 | break; |
3229 | case 1: |
3230 | sppPoint->x = -sppPoint->x; |
3231 | break; |
3232 | case 2: |
3233 | sppPoint->x = -sppPoint->x; |
3234 | sppPoint->y = -sppPoint->y; |
3235 | break; |
3236 | case 3: |
3237 | sppPoint->y = -sppPoint->y; |
3238 | break; |
3239 | } |
3240 | /* |
3241 | * and translate to X coordinate system |
3242 | */ |
3243 | sppPoint->y = -sppPoint->y; |
3244 | } |
3245 | |
3246 | /* |
3247 | * split an arc into pieces which are scan-converted |
3248 | * in the first-quadrant and mirrored into position. |
3249 | * This is necessary as the scan-conversion code can |
3250 | * only deal with arcs completely contained in the |
3251 | * first quadrant. |
3252 | */ |
3253 | |
3254 | static void |
3255 | drawArc(xArc * tarc, |
3256 | int l, int a0, int a1, miArcFacePtr right, miArcFacePtr left) |
3257 | { /* save end line points */ |
3258 | struct arc_def def; |
3259 | struct accelerators acc; |
3260 | int startq, endq, curq; |
3261 | int rightq, leftq = 0, righta = 0, lefta = 0; |
3262 | miArcFacePtr passRight, passLeft; |
3263 | int q0 = 0, q1 = 0, mask; |
3264 | struct band { |
3265 | int a0, a1; |
3266 | int mask; |
3267 | } band[5], sweep[20]; |
3268 | int bandno, sweepno; |
3269 | int i, j; |
3270 | int flipRight = 0, flipLeft = 0; |
3271 | int copyEnd = 0; |
3272 | miArcSpanData *spdata; |
3273 | |
3274 | spdata = miComputeWideEllipse(l, tarc); |
3275 | if (!spdata) |
3276 | return; |
3277 | |
3278 | if (a1 < a0) |
3279 | a1 += 360 * 64; |
3280 | startq = a0 / (90 * 64); |
3281 | if (a0 == a1) |
3282 | endq = startq; |
3283 | else |
3284 | endq = (a1 - 1) / (90 * 64); |
3285 | bandno = 0; |
3286 | curq = startq; |
3287 | rightq = -1; |
3288 | for (;;) { |
3289 | switch (curq) { |
3290 | case 0: |
3291 | if (a0 > 90 * 64) |
3292 | q0 = 0; |
3293 | else |
3294 | q0 = a0; |
3295 | if (a1 < 360 * 64) |
3296 | q1 = min(a1, 90 * 64)(((a1) < (90 * 64)) ? (a1) : (90 * 64)); |
3297 | else |
3298 | q1 = 90 * 64; |
3299 | if (curq == startq && a0 == q0 && rightq < 0) { |
3300 | righta = q0; |
3301 | rightq = curq; |
3302 | } |
3303 | if (curq == endq && a1 == q1) { |
3304 | lefta = q1; |
3305 | leftq = curq; |
3306 | } |
3307 | break; |
3308 | case 1: |
3309 | if (a1 < 90 * 64) |
3310 | q0 = 0; |
3311 | else |
3312 | q0 = 180 * 64 - min(a1, 180 * 64)(((a1) < (180 * 64)) ? (a1) : (180 * 64)); |
3313 | if (a0 > 180 * 64) |
3314 | q1 = 90 * 64; |
3315 | else |
3316 | q1 = 180 * 64 - max(a0, 90 * 64)(((a0) > (90 * 64)) ? (a0) : (90 * 64)); |
3317 | if (curq == startq && 180 * 64 - a0 == q1) { |
3318 | righta = q1; |
3319 | rightq = curq; |
3320 | } |
3321 | if (curq == endq && 180 * 64 - a1 == q0) { |
3322 | lefta = q0; |
3323 | leftq = curq; |
3324 | } |
3325 | break; |
3326 | case 2: |
3327 | if (a0 > 270 * 64) |
3328 | q0 = 0; |
3329 | else |
3330 | q0 = max(a0, 180 * 64)(((a0) > (180 * 64)) ? (a0) : (180 * 64)) - 180 * 64; |
3331 | if (a1 < 180 * 64) |
3332 | q1 = 90 * 64; |
3333 | else |
3334 | q1 = min(a1, 270 * 64)(((a1) < (270 * 64)) ? (a1) : (270 * 64)) - 180 * 64; |
3335 | if (curq == startq && a0 - 180 * 64 == q0) { |
3336 | righta = q0; |
3337 | rightq = curq; |
3338 | } |
3339 | if (curq == endq && a1 - 180 * 64 == q1) { |
3340 | lefta = q1; |
3341 | leftq = curq; |
3342 | } |
3343 | break; |
3344 | case 3: |
3345 | if (a1 < 270 * 64) |
3346 | q0 = 0; |
3347 | else |
3348 | q0 = 360 * 64 - min(a1, 360 * 64)(((a1) < (360 * 64)) ? (a1) : (360 * 64)); |
3349 | q1 = 360 * 64 - max(a0, 270 * 64)(((a0) > (270 * 64)) ? (a0) : (270 * 64)); |
3350 | if (curq == startq && 360 * 64 - a0 == q1) { |
3351 | righta = q1; |
3352 | rightq = curq; |
3353 | } |
3354 | if (curq == endq && 360 * 64 - a1 == q0) { |
3355 | lefta = q0; |
3356 | leftq = curq; |
3357 | } |
3358 | break; |
3359 | } |
3360 | band[bandno].a0 = q0; |
3361 | band[bandno].a1 = q1; |
3362 | band[bandno].mask = 1 << curq; |
3363 | bandno++; |
3364 | if (curq == endq) |
3365 | break; |
3366 | curq++; |
3367 | if (curq == 4) { |
3368 | a0 = 0; |
3369 | a1 -= 360 * 64; |
3370 | curq = 0; |
3371 | endq -= 4; |
3372 | } |
3373 | } |
3374 | sweepno = 0; |
3375 | for (;;) { |
3376 | q0 = 90 * 64; |
3377 | mask = 0; |
3378 | /* |
3379 | * find left-most point |
3380 | */ |
3381 | for (i = 0; i < bandno; i++) |
3382 | if (band[i].a0 <= q0) { |
3383 | q0 = band[i].a0; |
3384 | q1 = band[i].a1; |
3385 | mask = band[i].mask; |
3386 | } |
3387 | if (!mask) |
3388 | break; |
3389 | /* |
3390 | * locate next point of change |
3391 | */ |
3392 | for (i = 0; i < bandno; i++) |
3393 | if (!(mask & band[i].mask)) { |
3394 | if (band[i].a0 == q0) { |
3395 | if (band[i].a1 < q1) |
3396 | q1 = band[i].a1; |
3397 | mask |= band[i].mask; |
3398 | } |
3399 | else if (band[i].a0 < q1) |
3400 | q1 = band[i].a0; |
3401 | } |
3402 | /* |
3403 | * create a new sweep |
3404 | */ |
3405 | sweep[sweepno].a0 = q0; |
3406 | sweep[sweepno].a1 = q1; |
3407 | sweep[sweepno].mask = mask; |
3408 | sweepno++; |
3409 | /* |
3410 | * subtract the sweep from the affected bands |
3411 | */ |
3412 | for (i = 0; i < bandno; i++) |
3413 | if (band[i].a0 == q0) { |
3414 | band[i].a0 = q1; |
3415 | /* |
3416 | * check if this band is empty |
3417 | */ |
3418 | if (band[i].a0 == band[i].a1) |
3419 | band[i].a1 = band[i].a0 = 90 * 64 + 1; |
3420 | } |
3421 | } |
3422 | computeAcc(tarc, l, &def, &acc); |
3423 | for (j = 0; j < sweepno; j++) { |
3424 | mask = sweep[j].mask; |
3425 | passRight = passLeft = 0; |
3426 | if (mask & (1 << rightq)) { |
3427 | if (sweep[j].a0 == righta) |
3428 | passRight = right; |
3429 | else if (sweep[j].a1 == righta) { |
3430 | passLeft = right; |
3431 | flipRight = 1; |
3432 | } |
3433 | } |
3434 | if (mask & (1 << leftq)) { |
3435 | if (sweep[j].a1 == lefta) { |
3436 | if (passLeft) |
3437 | copyEnd = 1; |
3438 | passLeft = left; |
3439 | } |
3440 | else if (sweep[j].a0 == lefta) { |
3441 | if (passRight) |
3442 | copyEnd = 1; |
3443 | passRight = left; |
3444 | flipLeft = 1; |
3445 | } |
3446 | } |
3447 | drawQuadrant(&def, &acc, sweep[j].a0, sweep[j].a1, mask, |
3448 | passRight, passLeft, spdata); |
3449 | } |
3450 | /* |
3451 | * when copyEnd is set, both ends of the arc were computed |
3452 | * at the same time; drawQuadrant only takes one end though, |
3453 | * so the left end will be the only one holding the data. Copy |
3454 | * it from there. |
3455 | */ |
3456 | if (copyEnd) |
3457 | *right = *left; |
3458 | /* |
3459 | * mirror the coordinates generated for the |
3460 | * faces of the arc |
3461 | */ |
3462 | if (right) { |
3463 | mirrorSppPoint(rightq, &right->clock); |
3464 | mirrorSppPoint(rightq, &right->center); |
3465 | mirrorSppPoint(rightq, &right->counterClock); |
3466 | if (flipRight) { |
3467 | SppPointRec temp; |
3468 | |
3469 | temp = right->clock; |
3470 | right->clock = right->counterClock; |
3471 | right->counterClock = temp; |
3472 | } |
3473 | } |
3474 | if (left) { |
3475 | mirrorSppPoint(leftq, &left->counterClock); |
3476 | mirrorSppPoint(leftq, &left->center); |
3477 | mirrorSppPoint(leftq, &left->clock); |
3478 | if (flipLeft) { |
3479 | SppPointRec temp; |
3480 | |
3481 | temp = left->clock; |
3482 | left->clock = left->counterClock; |
3483 | left->counterClock = temp; |
3484 | } |
3485 | } |
3486 | free(spdata); |
3487 | } |
3488 | |
3489 | static void |
3490 | drawQuadrant(struct arc_def *def, |
3491 | struct accelerators *acc, |
3492 | int a0, |
3493 | int a1, |
3494 | int mask, |
3495 | miArcFacePtr right, miArcFacePtr left, miArcSpanData * spdata) |
3496 | { |
3497 | struct arc_bound bound; |
3498 | double yy, x, xalt; |
3499 | int y, miny, maxy; |
3500 | int n; |
3501 | miArcSpan *span; |
3502 | |
3503 | def->a0 = ((double) a0) / 64.0; |
3504 | def->a1 = ((double) a1) / 64.0; |
3505 | computeBound(def, &bound, acc, right, left); |
3506 | yy = bound.inner.min; |
3507 | if (bound.outer.min < yy) |
3508 | yy = bound.outer.min; |
3509 | miny = ICEIL(yy - acc->fromIntY); |
3510 | yy = bound.inner.max; |
3511 | if (bound.outer.max > yy) |
3512 | yy = bound.outer.max; |
3513 | maxy = floor(yy - acc->fromIntY); |
3514 | y = spdata->k; |
3515 | span = spdata->spans; |
3516 | if (spdata->top) { |
3517 | if (a1 == 90 * 64 && (mask & 1)) |
3518 | newFinalSpan(acc->yorgu - y - 1, acc->xorg, acc->xorg + 1); |
3519 | span++; |
3520 | } |
3521 | for (n = spdata->count1; --n >= 0;) { |
3522 | if (y < miny) |
3523 | return; |
3524 | if (y <= maxy) { |
3525 | arcSpan(y, |
3526 | span->lx, -span->lx, 0, span->lx + span->lw, |
3527 | def, &bound, acc, mask); |
3528 | if (span->rw + span->rx) |
3529 | tailSpan(y, -span->rw, -span->rx, def, &bound, acc, mask); |
3530 | } |
3531 | y--; |
3532 | span++; |
3533 | } |
3534 | if (y < miny) |
3535 | return; |
3536 | if (spdata->hole) { |
3537 | if (y <= maxy) |
3538 | arcSpan(y, 0, 0, 0, 1, def, &bound, acc, mask & 0xc); |
3539 | } |
3540 | for (n = spdata->count2; --n >= 0;) { |
3541 | if (y < miny) |
3542 | return; |
3543 | if (y <= maxy) |
3544 | arcSpan(y, span->lx, span->lw, span->rx, span->rw, |
3545 | def, &bound, acc, mask); |
3546 | y--; |
3547 | span++; |
3548 | } |
3549 | if (spdata->bot && miny <= y && y <= maxy) { |
3550 | n = mask; |
3551 | if (y == miny) |
3552 | n &= 0xc; |
3553 | if (span->rw <= 0) { |
3554 | arcSpan0(span->lx, -span->lx, 0, span->lx + span->lw, |
3555 | def, &bound, acc, n); |
3556 | if (span->rw + span->rx) |
3557 | tailSpan(y, -span->rw, -span->rx, def, &bound, acc, n); |
3558 | } |
3559 | else |
3560 | arcSpan0(span->lx, span->lw, span->rx, span->rw, |
3561 | def, &bound, acc, n); |
3562 | y--; |
3563 | } |
3564 | while (y >= miny) { |
3565 | yy = y + acc->fromIntY; |
3566 | if (def->w == def->h) { |
3567 | xalt = def->w - def->l; |
3568 | x = -sqrt(xalt * xalt - yy * yy); |
3569 | } |
3570 | else { |
3571 | x = tailX(yy, def, &bound, acc); |
3572 | if (acc->left.valid && boundedLe(yy, bound.left)((bound.left).min <= (yy) && (yy) <= (bound.left ).max)) { |
3573 | xalt = intersectLine(yy, acc->left)(acc->left.m * (yy) + acc->left.b); |
3574 | if (xalt < x) |
3575 | x = xalt; |
3576 | } |
3577 | if (acc->right.valid && boundedLe(yy, bound.right)((bound.right).min <= (yy) && (yy) <= (bound.right ).max)) { |
3578 | xalt = intersectLine(yy, acc->right)(acc->right.m * (yy) + acc->right.b); |
3579 | if (xalt < x) |
3580 | x = xalt; |
3581 | } |
3582 | } |
3583 | arcSpan(y, |
3584 | ICEIL(acc->fromIntX - x), 0, |
3585 | ICEIL(acc->fromIntX + x), 0, def, &bound, acc, mask); |
3586 | y--; |
3587 | } |
3588 | } |
3589 | |
3590 | void |
3591 | miPolyArc(DrawablePtr pDraw, GCPtr pGC, int narcs, xArc * parcs) |
3592 | { |
3593 | if (pGC->lineWidth == 0) |
3594 | miZeroPolyArc(pDraw, pGC, narcs, parcs); |
3595 | else |
3596 | miWideArc(pDraw, pGC, narcs, parcs); |
3597 | } |