
© Copyright Ian D. Romanick 2009 - 2011 30-May-2012

VGP352 – Week 9

⇨ Agenda:
 High Dynamic Range Imaging (HDR)
 Quiz #4 (at the end of class)

© Copyright Ian D. Romanick 2009 - 2011 30-May-2012

High Dynamic Range

⇨ Until now, our rendering has had a contrast ratio
of 256:1

 As noted in [Green 2004]:
 Bright things can be really bright
 Dark things can be really dark
 And the details can be seen in both

© Copyright Ian D. Romanick 2009 - 2011 30-May-2012

High Dynamic Range

⇨ Several possible solutions depending on hard-
ware support / performance:

 Render multiple “exposures” and composite results
 This is how HDR images are captured with a camera
 Yuck!

 Render to floating-point buffers
 Best quality
 Even fp16 buffers are large / expensive
 Differing levels of hardware support (esp. on mobile devices)

 Render to RGBe
 Smaller / faster
 Lower quality
 Issues with blending / multipass

© Copyright Ian D. Romanick 2009 - 2011 30-May-2012

Floating-Point Render Targets

⇨ Create drawing surface with a floating-point
internal format

 Surface is either a texture or a renderbuffer
 GL_RGB32F, GL_RGBA32F, GL_RGB16F, and

GL_RGBA16F are most common
 Requires GL_ARB_texture_float (and

GL_ARB_half_float_pixel for 16F formats) and
GL_ARB_color_buffer_float or OpenGL 3.0

© Copyright Ian D. Romanick 2009 - 2011 30-May-2012

Floating-Point Render Targets

⇨ Disable [0, 1] clamping of fragments
glClampColorARB(GLenum target, Glenum clamp);

 target is one of GL_CLAMP_VERTEX_COLOR,
GL_CLAMP_FRAGMENT_COLOR, or
GL_CLAMP_READ_COLOR

 clamp is one of GL_FIXED_ONLY, GL_TRUE, or
GL_FALSE

 OpenGL 3.x version drops ARB from name

© Copyright Ian D. Romanick 2009 - 2011 30-May-2012

Floating-Point Render Targets

⇨ Common hardware limitations:
 May not be supported at all!

 Almost universal on desktop, not so much on mobile
 Intel GMA950 in most netbooks lacks support

 May not support blending to floating-point targets
 RGBA32F blending not supported on Geforce6 and similar

generation chips
 May also be really slow

 May not support all texture filtering modes
 Some hardware can't do mipmap filtering from FP textures
 Many DX9 era cards can't do any filtering on RGBA32F

textures

© Copyright Ian D. Romanick 2009 - 2011 30-May-2012

RGBe

⇨ Store R, G, and B mantissa values with a single
exponent

 Exponent store in alpha component
 Trades precision for huge savings on storage

 Keeps most of the useful range of FP32

© Copyright Ian D. Romanick 2009 - 2011 30-May-2012

RGBe

⇨ Convert floating-point RGB in shader to RGBe:
vec4 rgb_to_rgbe(vec3 color)
{
 const float max_component =
 max(color.r, max(color.g, color.b));
 const float e = ceil(log(max_component));

 return vec4(color / exp(e),
 (e + 128.0) / 255.0);
}

© Copyright Ian D. Romanick 2009 - 2011 30-May-2012

RGBe

⇨ A lot of hardware supports a RGB9E5 mode
 Hardware that can texture from it should be able to

render to it too
 glCheckFramebufferStatus will return

GL_FRAMEBUFFER_UNSUPPORTED if it can't

 Internal format is GL_RGB9_E5
 9-bits for each mantissa, 5-bits for exponent

 Matches the bit partitions for 16-bit float

 Requires OpenGL 3.0 or
GL_EXT_texture_shared_exponent

© Copyright Ian D. Romanick 2009 - 2011 30-May-2012

RGBe

⇨ Limitations / problems:
 The log and exp calls in the shader aren't free

 May be a problem for compute bound vs. bandwidth bound
shaders

 Blending is possible but painful
 Can't store components with vastly different

magnitudes
 {10000, 0.1, 0.1 } becomes {10000, 0, 0}
 Usually fine for color data because the final display can't

reproduce that much range anyway

© Copyright Ian D. Romanick 2009 - 2011 30-May-2012

Tone Mapping

⇨ Remap HDR rendered image to LDR displayable
image

 Display still limited to [0,1] with only 8-bit precision

⇨ Remap using Reinhard's tone reproduction op-
erator in 5 steps:

 Convert RGB image to luminance
 Calculate log-average luminance

 Used to calculate key value

 Scale luminance by key value
 Remap scaled luminance to [0, 1]
 Scale RGB values by remapped luminance

© Copyright Ian D. Romanick 2009 - 2011 30-May-2012

Tone Mapping

⇨ Standard luminance calculation:

 If using RGBe, the color must be mapped back from
RGBe to floating-point

l=[0.2125 0.7154 0.0721]
T
⋅C

© Copyright Ian D. Romanick 2009 - 2011 30-May-2012

Tone Mapping

⇨ Image key:

⇨ Does this pixel averaging operation remind you
of anything?

k=
1
n

e
∑all pixels

ln ∂l x , y

© Copyright Ian D. Romanick 2009 - 2011 30-May-2012

Tone Mapping

⇨ Image key:

⇨ Does this pixel averaging operation remind you
of anything?

 It's like calculating the lowest-level mipmap!
 ...but with some other math and emitting HDR

k=
1
n

e
∑all pixels

ln ∂l x , y

© Copyright Ian D. Romanick 2009 - 2011 30-May-2012

Tone Mapping

⇨ Scaled luminance:

 l
mid zone

 is the mid zone reference reflectance value

 0.18 is a “common” value... see references

⇨ Remapped luminance:

⇨ Final pass modulates l
final

 with original RGB

 Output in plain old 8-bit RGB, naturally

lscaled=lx , y lmid zone

k

lfinal=
lscaled

1l scaled

© Copyright Ian D. Romanick 2009 - 2011 30-May-2012

Tone Mapping

⇨ Can alternately map based on the dimmest
value that should be full intensity

 l
min white

 is the minimum HDR intensity that should be

mapped to fully bright

lfinal=

lscaled 1
lscaled

lmin white

1lscaled

© Copyright Ian D. Romanick 2009 - 2011 30-May-2012

Tone Mapping

⇨ Tone map operation is performed each frame

© Copyright Ian D. Romanick 2009 - 2011 30-May-2012

Tone Mapping

⇨ Tone map operation is performed each frame
 Ouch!
 Common practice is to only recompute k every few

frames
 Once every half second is common
 Has the realistic side-effect of not immediately responding to

dramatic changes in scene brightness

© Copyright Ian D. Romanick 2009 - 2011 30-May-2012

Bloom

⇨ Overly bright areas leak brightness into
neighboring areas

© Copyright Ian D. Romanick 2009 - 2011 30-May-2012

Bloom

⇨ Overly bright areas leak brightness into
neighboring areas

 Apply “bright pass” filter to image
 Pixels above a certain threshold keep their luminance,

everything else becomes black

 Apply Gaussian blur
 Add blurred image to final LDR image

© Copyright Ian D. Romanick 2009 - 2011 30-May-2012

Bloom

⇨ Overly bright areas leak brightness into
neighboring areas

 Apply “bright pass” filter to image
 Pixels above a certain threshold keep their luminance,

everything else becomes black

 Apply Gaussian blur
 Add blurred image to final LDR image

This step can be very expensive!

© Copyright Ian D. Romanick 2009 - 2011 30-May-2012

Bloom

⇨ Blur optimization:
 Make multiple down-scaled images (i.e., mipmaps)

 Largest image should be 1/8th the size of the original

 Blur each down-scaled image
 This approximates a doubling of the filter kernel size

 Apply small filter kernel
 [Kalogirou 2006] suggests 5x5 is sufficient

© Copyright Ian D. Romanick 2009 - 2011 30-May-2012

References

Simon Green and Cem Cebenoyan (2004). "High Dynamic Range
Rendering (on the GeForce 6800)." GeForce 6 Series. nVidia.
http://download.nvidia.com/developer/presentations/2004/6800_Leagues/6800_Leagues_HDR.pdf

Adam Lake, Cody Northrop, and Jeff Freeman. “High Dynamic
Range Environment Mapping On Mainstream Graphics
Hardware.” 2005.
http://www.gamedev.net/reference/articles/article2485.asp

Harry Kalogirou (2006). “How to do good bloom for HDR rendering.”
http://harkal.sylphis3d.com/2006/05/20/how-to-do-good-bloom-for-hdr-rendering/

http://download.nvidia.com/developer/presentations/2004/6800_Leagues/6800_Leagues_HDR.pdf
http://www.gamedev.net/reference/articles/article2485.asp
http://harkal.sylphis3d.com/2006/05/20/how-to-do-good-bloom-for-hdr-rendering/

© Copyright Ian D. Romanick 2009 - 2011 30-May-2012

Next week...

⇨ Deferred shading
⇨ Review for the final
⇨ Read:
Shishkovtsov, Oles. "Deferred Shading in S.T.A.L.K.E.R." in

Fernando, Randima (editor) GPU Gems 2, Addison Wesley,
2005.
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter09.html

http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter09.html

© Copyright Ian D. Romanick 2009 - 2011 30-May-2012

Legal Statement

This work represents the view of the authors and does not necessarily rep-
resent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

This work is licensed under the Creative Commons Attribution-NonCom-
mercial-ShareAlike 3.0 United States License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or send a
letter to Creative Commons, 171 Second Street, Suite 300, San Francisco,
California, 94105, USA.

http://creativecommons.org/licenses/by-nc-sa/3.0/us/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

