
© Copyright Ian D. Romanick 2009, 2011 16-May-2012

VGP353 – Week 7

⇨Agenda:
­ Quiz #3
­ Ambient occlusion introduction
­ Real-time calculation of AO
­ Screen-space Ambient Occlusion, part 1

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

Ambient Lighting

⇨Hack to approximate global illumination
­ Objects occluded from the light source receive light

reflected from other objects
­ Not all locations receive the same amount of indirect

light

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

Ambient Occlusion

⇨ The occlusion at a point is calculated as:

­ V
p,

 is the visibility function at p in the direction 

A p=
1
π∫
Ω

V p ,ω (n⋅ω)dω

V p ,ω={0 if p is occluded in theωdirection
1 otherwise

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

Ambient Occlusion

⇨ [Zhukov, et. al 2003] suggest a slightly different
formulation

­ L(p, ω) is the distance to the nearest occluder in the ω
direction

­ ρ is an arbitrary function with the following properties:

­ They suggest (1 – e-τL) where τ is parameter > 0

ρ(L)={0 for L=0
1 for L=+∞

 ρ ' (L)={>0 for L<+∞
0 for L=+∞

 ρ ' ' (L)<0

A p=
1
π∫
Ω

ρ(L(p ,ω)) (n⋅ω)dω

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

Average Light Direction Vector

⇨Calculate the average direction of light arriving at
the point
­ Average together unoccluded rays
­ Store delta between this vector and the geometric

normal along with the ambient occlusion value
­ Use this “bent normal” to access environment maps

or for lighting
­ Attenuate the lighting value using the occlusion factor

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

Average Light Direction Vector

N
b

p

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

Average Light Direction Vector

N
b

pFAIL
!

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

Calculation of Ambient Occlusion

⇨How can we calculate A
p
?

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

Calculation of Ambient Occlusion

⇨How can we calculate A
p
?

­ Classic answer uses ray tracing:
­ Cast a large number of rays from each point on a surface.
­ Each ray that intersects some other surface within a preset

distance is occluded

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

Calculation of Ambient Occlusion

⇨How can we calculate A
p
?

­ Classic answer uses ray tracing:
­ Cast a large number of rays from each point on a surface
­ Each ray that intersects some other surface within a preset

distance is occluded

­ Can also use a rasterizer:
­ Draw a low resolution hemispherical view from each point on

a surface
­ Set far clip plane to limit distance
­ Pixels are either white (not drawn) or black (drawn), and the

average is the occlusion value

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

Calculation of Ambient Occlusion

⇨Problems:
­ Both methods are too expensive for real-time update
­ Lack of real-time update prevents use on animated

models

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

References

Ambient Occlusion. Internet,
http://en.wikipedia.org/wiki/Ambient_occlusion. Accessed on
August 29th, 2009.

Landis, Hayden. 2002. "Production-Ready Global Illumination."
Course 16 notes, SIGGRAPH 2002. Available online at
http://www.renderman.org/RMR/Books/sig02.course16.pdf.
­ Chapter 5 covers ambient occlusion.
­ Chapter 2 covers techniques for “texture baking.”

Iones, A., Krupkin, A., Sbert, M., and Zhukov, S. 2003. Fast,
Realistic Lighting for Video Games. IEEE Computer Graphics and
Applications. 23, 3 (May. 2003), 54–64.
http://ima.udg.edu/iiia/GGG/UsersDocs/mateu/obscurances.pdf

http://en.wikipedia.org/wiki/Ambient_occlusion
http://www.renderman.org/RMR/Books/sig02.course16.pdf
http://ima.udg.edu/iiia/GGG/UsersDocs/mateu/obscurances.pdf

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

Calculation of Ambient Occlusion

⇨How can we make the AO calculation faster?
­ We really want to use AO with animated models
­ We really want to use AO across the whole scene

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

Calculation of Ambient Occlusion

⇨How can we make the AO calculation faster?
­ We really want to use AO with animated models
­ We really want to use AO across the whole scene

⇨ Three common strategies:
­ Calculate occlusion factor on GPU using GPGPU

techniques (using CUDA, OpenCL, etc.)
­ See [Pharr 04]

­ Calculate approximate occlusion factor
­ See [Bunnel 05]

­ Use screen space ambient occlusion (SSAO)
­ See [Mittring 07] [Shanmugam 07]

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

Dynamic AO

⇨Approximate mesh as a set of surface elements
­ Each element is represented by an oriented disc
­ Each disc has a position, normal, and area
­ One disc per vertex of the original mesh

­ Disc has two sides
­ Front side emits and reflects light
­ Back side transmits light and shadows

­ Store element information in a texture

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

Disc-to-disc Occlusion

⇨Approximate the disc-to-disc occlusion
­ A is the area of the emitter

1−
r cosEmax 1,4 cosR

 A

r2

R


E

E

R

r

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

Disc-to-disc Occlusion

⇨Approximate the disc-to-disc occlusion
­ A is the area of the emitter

1−
r cosEmax 1,4 cosR

 A

r2

R


E

E

R

r

Disc-to-disc accessibility

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

Multipass Shadow Algorithm

⇨ First pass:
­ Approximate accessibility for each element as one

minus the sum of the accessibility to all other discs
­ After first pass, many surfaces have too much

shadow
­ Elements that are themselves shadowed still cast shadows

⇨Second pass:
­ Perform same calculation as first pass
­ Multiply each form factor by the element's

accessibility from the first pass
­ Some surfaces still have too much light
­ Elements that are triple shadowed

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

Multipass Shadow Algorithm

⇨ Third pass:
­ Lather, rinse, repeat...

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

Multipass Shadow Algorithm

⇨ Third pass:
­ Lather, rinse, repeat...

⇨ Too expensive!
­ Just use a weighted average of the first two passes

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

Performance

⇨What is the time complexity of the algorithm?

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

Performance

⇨What is the time complexity of the algorithm?
­ Accessibility is computed for each of the n elements

with each of the other n-1 elements
­ Sounds like O(n2)

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

Performance

⇨Performs well because hardware is fast
­ Even an old Geforce 6800 can perform ~150 million

calculations per second
­ Can the algorithm be improved to O(n log n)?

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

Element Hierarchy

⇨Create a hierarchy of elements
­ Repeatedly merge groups of elements near each

other on the mesh

⇨During processing, traverse the hierarchy
­ Start with the coarsest level of the hierarchy
­ If the element is far enough away, use that.

Otherwise move down the hierarchy.
­ The paper suggests 4x the radius of the emitter

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

Indirect Lighting

⇨Same data structure can be used to implement a
single level of indirect lighting
­ Replace the occluder function with a disc-to-disc

radiance transfer function
­ Use one pass to transfer light
­ Use two passes to shadow light

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

Indirect Lighting

⇨Calculate the light reflected at each element
­ Computation proceeds as normal using either AO for

environment maps or shadow maps for point lights
­ Use the disc-to-disc form factor approximation

A cosE cosR

 r2
A

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

Indirect Lighting

⇨Run one pass of the radiance-transfer algorithm
­ Calculate the maximum amount of reflected (or

emitted) light that can reach the element

⇨Run one pass of the shadow algorithm
­ Subtract from each element's total light based on how

much light reaches the shadowing elements
­ Can run a third pass to remove double shadowing
­ Just like the dynamic AO algorithm

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

References

Pharr, Matt and Green, Simon. "Ambient Occlusion" in Fernando,
Randima (editor) GPU Gems, Addison-Wesley, 2004.
http://http.developer.nvidia.com/GPUGems/gpugems_ch17.html

Bunnel, Michael. "Dynamic Ambient Occlusion and Indirect Lighting"
in Fernando, Randima (editor) GPU Gems 2, Addison Wesley,
2005.
http://download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch14.pdf

http://http.developer.nvidia.com/GPUGems/gpugems_ch17.html
http://download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch14.pdf

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

SSAO

⇨Can approximate ambient occlusion using
information from the depth buffer
­ First game shipped to use this technique was Crysis

by Crytek in 2007
­ The depth buffer is a rough approximation of the

scene geometry

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

SSAO

⇨Approximate AO (A

) due to a sphere:

p

c r



Length of this side
approximates the
length of the arc

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

SSAO

⇨Approximate AO (A

) due to a sphere:

­ c and r are the center and radius of the sphere
­ n is the normal vector at p
­ pc is the vector from p to c

­ S

 is surface area of the solid angle of the circle

AΨ(c , r ,p ,n)=SΩ(p ,c , r)max (n⋅ p⃗c
∣⃗pc∣

,0)

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

SSAO

⇨Approximate AO (A

) due to a sphere:

SΩ(p ,c , r)=2πh
h=1−cosθ

θ=sin−1(r
∣⃗pc∣)

SΩ(p ,c , r)=2π(1−cos(sin−1(r
∣p⃗c∣)))

AΨ(c , r ,p ,n)=SΩ(p ,c , r)max (n⋅ p⃗c
∣⃗pc∣

,0)

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

SSAO

⇨Around each pixel, sample near-by positions:
­ Back project the screen (x, y, z) to camera space
­ Bias the center slightly along -n to prevent self-occlusion

from flat surfaces

­ Back project the size of the pixel into camera space
­ This sets the size of the sphere

­ Perform approximate sphere AO calculation

⇨Use resulting sum to modulate color in frame-
buffer

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

SSAO

⇨Straightforward approach requires piles of
samples to look good
­ The Crysis developers say ~200

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

SSAO

⇨Straightforward approach requires piles of
samples to look good
­ The Crysis developers say ~200

⇨Use a similar irregular sampling technique as
with PCF
­ Unlike PCF, add a geometry-aware filter
­ Rotate the kernel for each pixel
­ Repeat every N pixels

­ Results in only high-frequency noise in the final image

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

Geometry-Aware Filter

⇨Perform a normal Gaussian blur or box filter
­ Use an NN filter size
­ Do not include pixels that span discontinuities
­ Use change in depth
­ Store normals in a secondary buffer and use normals

­ Eliminates most of the high-frequency noise

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

References

Shanmugam, P. and Arikan, O. 2007. Hardware accelerated ambient
occlusion techniques on GPUs. In Proceedings of the 2007
Symposium on interactive 3D Graphics and Games (Seattle,
Washington, April 30 - May 02, 2007). I3D '07. ACM, New York,
NY, 73-80. http://perumaal.googlepages.com/

Screen Space Ambient Occlusion. Internet,
http://en.wikipedia.org/wiki/Screen_Space_Ambient_Occlusion.
Accessed on August 29th, 2009.

http://perumaal.googlepages.com/
http://en.wikipedia.org/wiki/Screen_Space_Ambient_Occlusion

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

Next week...

⇨More SSAO
­ Horizon Split AO
­ Multi-Layer Dual-Resolution SSAO

⇨Read:
Tobias Ritschel, Thorsten Grosch, Hans-Peter Seidel. Approximating Dynamic

Global Illumination in Screen Space. Proceedings ACM SIGRAPH Sympo-
sium on Interactive 3D Graphics and Games, Boston, MA, February 27—
March 1, 2009. http://www.mpi-inf.mpg.de/~ritschel/SSDO/

http://www.mpi-inf.mpg.de/~ritschel/SSDO/

© Copyright Ian D. Romanick 2009, 2011 16-May-2012

Legal Statement

This work represents the view of the authors and does not necessarily rep-
resent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

This work is licensed under the Creative Commons Attribution-NonCom-
mercial-ShareAlike 3.0 United States License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or send a
letter to Creative Commons, 171 Second Street, Suite 300, San Francisco,
California, 94105, USA.

http://creativecommons.org/licenses/by-nc-sa/3.0/us/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

