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VGP353 – Week 7

⇨Agenda:
­ Quiz #3
­ Ambient occlusion introduction
­ Real-time calculation of AO
­ Screen-space Ambient Occlusion, part 1
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Ambient Lighting

⇨Hack to approximate global illumination
­ Objects occluded from the light source receive light 

reflected from other objects
­ Not all locations receive the same amount of indirect 

light
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Ambient Occlusion

⇨ The occlusion at a point is calculated as:

­ V
p,

 is the visibility function at p in the direction 

A p=
1
π∫
Ω

V p ,ω (n⋅ω )dω

V p ,ω={0 if p is occluded in theωdirection
1 otherwise



© Copyright Ian D. Romanick 2009, 2011 16-May-2012

Ambient Occlusion

⇨ [Zhukov, et. al 2003] suggest a slightly different 
formulation

­ L(p, ω) is the distance to the nearest occluder in the ω 
direction

­ ρ is an arbitrary function with the following properties:

­ They suggest (1 – e-τL) where τ is parameter > 0

ρ(L)={0 for L=0
1 for L=+∞

  ρ ' (L)={>0 for L<+∞
0 for L=+∞

  ρ ' ' (L)<0

A p=
1
π∫
Ω

ρ(L( p ,ω)) (n⋅ω )dω
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Average Light Direction Vector

⇨Calculate the average direction of light arriving at 
the point
­ Average together unoccluded rays
­ Store delta between this vector and the geometric 

normal along with the ambient occlusion value
­ Use this “bent normal” to access environment maps 

or for lighting
­ Attenuate the lighting value using the occlusion factor
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Average Light Direction Vector

N
b

p
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Average Light Direction Vector

N
b

pFAIL
!
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Calculation of Ambient Occlusion

⇨How can we calculate A
p
?
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Calculation of Ambient Occlusion

⇨How can we calculate A
p
?

­ Classic answer uses ray tracing:
­ Cast a large number of rays from each point on a surface.
­ Each ray that intersects some other surface within a preset 

distance is occluded
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Calculation of Ambient Occlusion

⇨How can we calculate A
p
?

­ Classic answer uses ray tracing:
­ Cast a large number of rays from each point on a surface
­ Each ray that intersects some other surface within a preset 

distance is occluded

­ Can also use a rasterizer:
­ Draw a low resolution hemispherical view from each point on 

a surface
­ Set far clip plane to limit distance
­ Pixels are either white (not drawn) or black (drawn), and the 

average is the occlusion value
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Calculation of Ambient Occlusion

⇨Problems:
­ Both methods are too expensive for real-time update
­ Lack of real-time update prevents use on animated 

models
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Calculation of Ambient Occlusion

⇨How can we make the AO calculation faster?
­ We really want to use AO with animated models
­ We really want to use AO across the whole scene
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Calculation of Ambient Occlusion

⇨How can we make the AO calculation faster?
­ We really want to use AO with animated models
­ We really want to use AO across the whole scene

⇨ Three common strategies:
­ Calculate occlusion factor on GPU using GPGPU 

techniques (using CUDA, OpenCL, etc.)
­ See [Pharr 04]

­ Calculate approximate occlusion factor
­ See [Bunnel 05]

­ Use screen space ambient occlusion (SSAO)
­ See [Mittring 07] [Shanmugam 07]
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Dynamic AO

⇨Approximate mesh as a set of surface elements
­ Each element is represented by an oriented disc
­ Each disc has a position, normal, and area
­ One disc per vertex of the original mesh

­ Disc has two sides
­ Front side emits and reflects light
­ Back side transmits light and shadows

­ Store element information in a texture
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Disc-to-disc Occlusion

⇨Approximate the disc-to-disc occlusion
­ A is the area of the emitter

1−
r cosEmax 1,4 cosR

 A

r2

R


E

E

R

r
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Disc-to-disc Occlusion

⇨Approximate the disc-to-disc occlusion
­ A is the area of the emitter

1−
r cosEmax 1,4 cosR

 A

r2

R


E

E

R

r

Disc-to-disc accessibility
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Multipass Shadow Algorithm

⇨ First pass:
­ Approximate accessibility for each element as one 

minus the sum of the accessibility to all other discs
­ After first pass, many surfaces have too much 

shadow
­ Elements that are themselves shadowed still cast shadows

⇨Second pass:
­ Perform same calculation as first pass
­ Multiply each form factor by the element's 

accessibility from the first pass
­ Some surfaces still have too much light
­ Elements that are triple shadowed
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Multipass Shadow Algorithm

⇨ Third pass:
­ Lather, rinse, repeat...
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Multipass Shadow Algorithm

⇨ Third pass:
­ Lather, rinse, repeat...

⇨ Too expensive!
­ Just use a weighted average of the first two passes
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Performance

⇨What is the time complexity of the algorithm?
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Performance

⇨What is the time complexity of the algorithm?
­ Accessibility is computed for each of the n elements 

with each of the other n-1 elements
­ Sounds like O(n2)
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Performance

⇨Performs well because hardware is fast
­ Even an old Geforce 6800 can perform ~150 million 

calculations per second
­ Can the algorithm be improved to O(n log n)?
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Element Hierarchy

⇨Create a hierarchy of elements
­ Repeatedly merge groups of elements near each 

other on the mesh

⇨During processing, traverse the hierarchy
­ Start with the coarsest level of the hierarchy
­ If the element is far enough away, use that.  

Otherwise move down the hierarchy.
­ The paper suggests 4x the radius of the emitter
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Indirect Lighting

⇨Same data structure can be used to implement a 
single level of indirect lighting
­ Replace the occluder function with a disc-to-disc 

radiance transfer function
­ Use one pass to transfer light
­ Use two passes to shadow light
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Indirect Lighting

⇨Calculate the light reflected at each element
­ Computation proceeds as normal using either AO for 

environment maps or shadow maps for point lights
­ Use the disc-to-disc form factor approximation

A cosE cosR

 r2
A



© Copyright Ian D. Romanick 2009, 2011 16-May-2012

Indirect Lighting

⇨Run one pass of the radiance-transfer algorithm
­ Calculate the maximum amount of reflected (or 

emitted) light that can reach the element

⇨Run one pass of the shadow algorithm
­ Subtract from each element's total light based on how 

much light reaches the shadowing elements
­ Can run a third pass to remove double shadowing
­ Just like the dynamic AO algorithm
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SSAO

⇨Can approximate ambient occlusion using 
information from the depth buffer
­ First game shipped to use this technique was Crysis 

by Crytek in 2007
­ The depth buffer is a rough approximation of the 

scene geometry
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SSAO

⇨Approximate AO (A

) due to a sphere:

p

c r



Length of this side 
approximates the 
length of the arc
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SSAO

⇨Approximate AO (A

) due to a sphere:

­ c and r are the center and radius of the sphere
­ n is the normal vector at p
­ pc is the vector from p to c

­ S

 is surface area of the solid angle of the circle

AΨ(c , r ,p ,n)=SΩ(p ,c , r)max (n⋅ p⃗c
∣⃗pc∣

,0)
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SSAO

⇨Approximate AO (A

) due to a sphere:

SΩ(p ,c , r )=2πh
h=1−cosθ

θ=sin−1( r
∣⃗pc∣)

SΩ(p ,c , r)=2π(1−cos(sin−1( r
∣p⃗c∣)))

AΨ(c , r ,p ,n)=SΩ(p ,c , r)max (n⋅ p⃗c
∣⃗pc∣

,0)
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SSAO

⇨Around each pixel, sample near-by positions:
­ Back project the screen (x, y, z) to camera space
­ Bias the center slightly along -n to prevent self-occlusion 

from flat surfaces

­ Back project the size of the pixel into camera space
­ This sets the size of the sphere

­ Perform approximate sphere AO calculation

⇨Use resulting sum to modulate color in frame-
buffer
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SSAO

⇨Straightforward approach requires piles of 
samples to look good
­ The Crysis developers say ~200
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SSAO

⇨Straightforward approach requires piles of 
samples to look good
­ The Crysis developers say ~200

⇨Use a similar irregular sampling technique as 
with PCF
­ Unlike PCF, add a geometry-aware filter
­ Rotate the kernel for each pixel
­ Repeat every N pixels

­ Results in only high-frequency noise in the final image
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Geometry-Aware Filter

⇨Perform a normal Gaussian blur or box filter
­ Use an NN filter size
­ Do not include pixels that span discontinuities
­ Use change in depth
­ Store normals in a secondary buffer and use normals

­ Eliminates most of the high-frequency noise
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Next week...

⇨More SSAO
­ Horizon Split AO
­ Multi-Layer Dual-Resolution SSAO

⇨Read:
Tobias Ritschel, Thorsten Grosch, Hans-Peter Seidel. Approximating Dynamic 

Global Illumination in Screen Space.  Proceedings ACM SIGRAPH Sympo-
sium on Interactive 3D Graphics and Games, Boston, MA, February 27—
March 1, 2009.  http://www.mpi-inf.mpg.de/~ritschel/SSDO/

http://www.mpi-inf.mpg.de/~ritschel/SSDO/
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Legal Statement

This work represents the view of the authors and does not necessarily rep-
resent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other 
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service 
marks of others.

This work is licensed under the Creative Commons Attribution-NonCom-
mercial-ShareAlike 3.0 United States License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or send a 
letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, 
California, 94105, USA.

http://creativecommons.org/licenses/by-nc-sa/3.0/us/
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