
© Copyright Ian D. Romanick 2009, 2012 9-May-2012

VGP353 – Week 6

⇨ Agenda:
 Fixing z-pass and z-fail with ZP+
 Hardware based optimizations:

 Depth clamping
 Depth bounds testing

© Copyright Ian D. Romanick 2009, 2012 9-May-2012

Z-pass Problems

⇨ Z-pass has problems when the light and
occluders are outside the view frustum

 This includes the case where the camera is inside a
shadow volume

 Shadow volume geometry that is clipped by the near
plane is the source of all the z-pass problems

⇨ Partially solved by generating front-cap
geometry

 Generating this geometry is hard
 This difficulty led to the invention of z-fail

© Copyright Ian D. Romanick 2009, 2012 9-May-2012

Z-pass Problems

Incorrectly
shadowed

Incorrectly not
shadowed

© Copyright Ian D. Romanick 2009, 2012 9-May-2012

Z-pass Problems

⇨ At a high level, what is the front-cap geometry?

© Copyright Ian D. Romanick 2009, 2012 9-May-2012

Z-pass Problems

⇨ At a high level, what is the front-cap geometry?
 Front-facing (w.r.t. the light) occluder geometry

projected onto the camera's near-plane
 Why not do just that: project front-facing occluder

geometry on the the camera's near-plane

© Copyright Ian D. Romanick 2009, 2012 9-May-2012

Z-pass Problems

⇨ At a high level, what is the front-cap geometry?
 Front-facing (w.r.t. the light) occluder geometry

projected onto the camera's near-plane
 Why not do just that: project front-facing occluder

geometry on the the camera's near-plane

⇨ ZP+ Algorithm:
1. Position eye at light

2. Orient view frustum parallel (or anti-parallel) to the
camera frustum

3. Set far-plane to match the camera's near-plane

4. Draw front facing geometry into stencil buffer

© Copyright Ian D. Romanick 2009, 2012 9-May-2012

ZP+

Camera
near-plane

Light near-plane
and far-plane

© Copyright Ian D. Romanick 2009, 2012 9-May-2012

ZP+

⇨ Projection matrix is:

Pl=
2 f
cwidth

0 −2
 x

cwidth

0

0
2 f

cheight

−2
 y

cheight

0

0 0
n f
n− f

2 n f
n− f

0 0 −1 0

© Copyright Ian D. Romanick 2009, 2012 9-May-2012

ZP+

⇨ Since geometry is drawn with different
projections, rounding errors can cause slight
cracks to appear:

 Not a significant problem in practice
 Can be solved, see paper for details

© Copyright Ian D. Romanick 2009, 2012 9-May-2012

References

Hornus, Samuel; Hoberock, Jared; Lefebvre, Sylvain; Hart, John C.,
"ZP+: Correct Z-Pass Stencil Shadows." In Proceedings of ACM
Symposium on Interactive 3D Graphics and Games. ACM Press,
April 2005. http://artis.imag.fr/Publications/2005/HHLH05/

http://artis.imag.fr/Publications/2005/HHLH05/

© Copyright Ian D. Romanick 2009, 2012 9-May-2012

Hardware Optimizations

⇨ Several hardware features exist to help
accelerate shadow volume rendering

 Depth clamping
 Scissor testing
 Depth bounds testing

© Copyright Ian D. Romanick 2009, 2012 9-May-2012

Depth Clamp

⇨ Fragments with interpolated depth values less
than 0.0 or greater than 1.0 get a depth value
clamped to [0, 1]

 These are the fragments that would be clipped by the
near- or far-plane

 Eliminates need for front- and back-caps on shadow
volumes

 See ZP+ paper for more details

⇨ Part of OpenGL 3.2
 Also GL_ARB_depth_clamp and

GL_NV_depth_clamp

© Copyright Ian D. Romanick 2009, 2012 9-May-2012

Depth Clamp

Drawn with
depth = 0

© Copyright Ian D. Romanick 2009, 2012 9-May-2012

Scissor Testing

⇨ Spot lights only affect some areas of the screen
 We end up drawing shadow volumes even where

there is no light to be shadowed!

⇨ Use scissor test to eliminate drawing of useless
shadow volumes

 Calculate x/y region of the window where a light can
be seen

 Set scissor rectangle to just this region
 Fragments outside the region will be clipped

© Copyright Ian D. Romanick 2009, 2012 9-May-2012

Depth Bounds Testing

⇨ Extra per-fragment test before stencil test
 Discards fragment if the existing depth value is

outside a predefined range
 Acts like a scissor test for depth

⇨ Part of OpenGL 3.2
 Also GL_EXT_depth_bounds_test

© Copyright Ian D. Romanick 2009, 2012 9-May-2012

Depth Bounds Testing

 calculate_light_screen_space_volume(light,
 &x_min, &x_max,
 &y_min, &y_max,
 &z_min, &z_max);

 glEnable(GL_DEPTH_BOUNDS_TEST_EXT);
 glEnable(GL_SCISSOR_TEST);

 glDepthBounds(z_min, z_max);
 glScissor(x_min, y_min, x_max – x_min, y_max – y_min);

 do_shadows(light, objects);

© Copyright Ian D. Romanick 2009, 2012 9-May-2012

Optimizing Shadow Volumes

⇨ We've reduced the fill-rate a lot but we still...
 Render a lot of volumes that don't produce visible

shadows
 Render a lot of volumes that do produce visible

shadows in areas where they don't produce shadows
 Render a lot of volumes from casters that are

themselves completely in shadow

© Copyright Ian D. Romanick 2009, 2012 9-May-2012

Optimizing Shadow Volumes

⇨ Improve fill-rate usage two ways:
 Cull volumes from casters that cast shadows not

visible to the eye
 Clamp shadow volume to the regions containing

possible receivers

© Copyright Ian D. Romanick 2009, 2012 9-May-2012

Shadow Volume Culling

⇨ Compute two sets of objects:
 Potential shadow receivers (PSR): Objects that may

be visible to the camera
 Potential shadow casters (PSC): Objects that may be

visible to the light

⇨ Use occlusion queries:
 Render the scene once from the view of the light
 Disable depth writes
 Render object bounding boxes with occlusion queries

 BBs with non-occluded pixels represent potentially visible
objects

© Copyright Ian D. Romanick 2009, 2012 9-May-2012

Shadow Volume Clamping

⇨ Two steps:
 Calculate continuously occupied intervals in object

space
 Reduce to discrete intervals in image space

© Copyright Ian D. Romanick 2009, 2012 9-May-2012

Continuous Clamping

⇨ From the point-of-view of the light:
 Project each AABB into the lights near plane

 The projections are squares

 Determine which projections overlap
 For each caster-receiver overlap, determine the depth

interval occupied
 The paper describes the occupied interval calculation in

more detail

 This is performed entirely on the CPU

© Copyright Ian D. Romanick 2009, 2012 9-May-2012

Discrete Clamping

⇨ From the point-of-view of the light:
 Slice the view frustum into segments using “similarly

oriented” planes
 Planes roughly parallel to the light's near plane that pass

through the camera are a good choice

 Render slices back-to-front
 The borders of the slice are clip planes
 Project the caster onto the far plane
 Render objects using occlusion query
 If no pixels pass, the slice is empty

 This is performed on the GPU

© Copyright Ian D. Romanick 2009, 2012 9-May-2012

References

Lloyd, B., Wendt, J., Govindaraju, N., and Manocha, D. 2004. CC
Shadow Volumes. In ACM SIGGRAPH 2004 Sketches (Los An-
geles, California, August 8 - 12, 2004). R. Barzel, Ed. SIGGRAPH
'04. ACM, New York, NY, 146. http://gamma.cs.unc.edu/ccsv/

http://gamma.cs.unc.edu/ccsv/

© Copyright Ian D. Romanick 2009, 2012 9-May-2012

Next week...

⇨ Quiz #3
⇨ Ambient occlusion
⇨ Read:
Iones, A., Krupkin, A., Sbert, M., and Zhukov, S. 2003. Fast,

Realistic Lighting for Video Games. IEEE Computer Graphics and
Applications. 23, 3 (May. 2003), 54–64.
http://ima.udg.edu/iiia/GGG/UsersDocs/mateu/obscurances.pdf

http://ima.udg.edu/iiia/GGG/UsersDocs/mateu/obscurances.pdf

© Copyright Ian D. Romanick 2009, 2012 9-May-2012

Legal Statement

This work represents the view of the authors and does not necessarily rep-
resent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

This work is licensed under the Creative Commons Attribution-NonCom-
mercial-ShareAlike 3.0 United States License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or send a
letter to Creative Commons, 171 Second Street, Suite 300, San Francisco,
California, 94105, USA.

http://creativecommons.org/licenses/by-nc-sa/3.0/us/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

