
© Copyright Ian D. Romanick 2009, 2010

23-November-2011

VGP351 � Week 8

� Agenda:

­ Sampling

­ Theory

­ Application to texture mapping

­ Simple filtering

­ Mipmapping

­ Anisotropic filtering

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Sampling

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Sampling

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Sampling

Sampling

Sampling

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Avoiding Aliasing

� How?

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Avoiding Aliasing

� How?

� Sample at a higher rate

­ What sample rate is sufficient?

­ More samples means more data, and that comes at a
cost

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Nyquist-Shannon Sampling Theorem

� If f is the highest frequency element in a signal,
the signal must be sampled at a rate of at least
2f in order to be accurately reconstructed

­ If the sample rate is f
s
 then we call f

s
/2 the critical

frequency or the Nyquist frequency

­ Any elements in the signal with frequency higher than
the critical frequency will alias

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Avoiding Aliasing

� If having frequencies above the critical frequency
causes aliasing, how can we eliminate the
aliasing?

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Avoiding Aliasing

� If having frequencies above the critical frequency
causes aliasing, how can we eliminate the
aliasing?

­ Remove elements above the critical frequency!

­ This is done using a low-pass filter

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Resampling

Resampling

Resampling

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Texture Mapping

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Magnification

� When a single texel is mapped to multiple
fragments, the texture is magnified

� What happens when the location sampled from
the texture lies between texels?

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Magnification

� When a single texel is mapped to multiple
fragments, the texture is magnified

� What happens when the location sampled from
the texture lies between texels?

­ Nearest neighbor sample

­ Linear sample

­ Cubic convolution

­ Rarely implemented in hardware, but you could write a
shader to do it!

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Minification

� When a single fragment covers multiple texels,
the texture is minimized

­ This is where texture aliasing can occur

� What to do?

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Minification

� When a single fragment covers multiple texels,
the texture is minimized

­ This is where texture aliasing can occur

� What to do?

­ In a perfect world, sample and filter all of the covered
texels

­ Since an entire 1024×1024 texture could be
minimized to a single fragment, this is impractical

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Minification

� Nearest neighbor sampling

­ Most likely to have aliasing

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Minification

� Linear filtering of nearest neighbors

­ In 2D this is called bilinear filtering

­ Better results because we're effectively doubling our
sample rate

­ We also increase the memory bandwidth requirements by 2n

­ At some point the texture will be minimized enough
that the sample rate will still be too low to prevent
aliasing

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Mipmapping

� Create multiple pre-filtered, down-sampled
versions of the �base� texture

­ Down-sampled textures are called mipmaps

­ The collection of mipmaps for a particular base
texture is called its mipmap stack

­ From Latin �multum in pavro� for �many things in one
place�

� As the texel area covered by a fragment
increases, use a smaller mipmap

­ In smaller mipmaps, each texel represents more
samples from the base texture

Example Mipmap Stack

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Mipmapping

� What's the trade-off?

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Mipmapping

� What's the trade-off?

­ Memory size versus memory bandwidth

­ What is the increase in size for a 2D texture?

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Mipmapping

� What's the trade-off?

­ Memory size versus memory bandwidth

­ What is the increase in size for a 2D texture?

1

2
2
�

1

4
2
�

1

8
2
�...�

1

2
2n
�

1

3

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Mipmapping

� LOD will be used
where the outlined
area is a single texel

­ No aliasing, but lots of
unneeded data is fil-
tered in

­ Results in images that
are too blurry or over-
filtered

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Mipmapping

� Can partially fix the
oversampling by
taking multiple
samples from the next
higher LOD

­ This is a bi-linear filter
of the mipmap

­ Can extend further by
filtering between LODs

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Mipmapping

� For this case, mipmap
filtering will either
oversample or
undersample

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Improved Filtering

� All of these filter
modes assume that
the sample region is
isotropic

­ Isotropy is the property
of being uniform in all
directions

­ We clearly can have
ideal sample regions
that are anisotropic

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Improved Filtering

� An anisotropic filter
might sample these
10 positions in the
appropriate mipmap

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Improved Filtering

� An anisotropic filter
might sample these
27 positions in the
appropriate mipmap

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Improved Filtering

� An anisotropic filter
might sample these
27 positions in the
appropriate mipmap

­ The red boxes show
the regions where over-
filtering would occur
with only 10 samples

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Setting Filter Modes

� OpenGL has a name for each each of these filter
modes:

­ GL_NEAREST � Point sampling

­ GL_LINEAR � Bi-linear in 2D

­ GL_NEAREST_MIPMAP_NEAREST � Point-sampling from

mipmap

­ GL_LINEAR_MIPMAP_NEAREST � Linear sampling from one

mipmap

­ GL_NEAREST_MIPMAP_LINEAR � Linear blend of two point-

sampled mipmaps

­ GL_LINEAR_MIPMAP_LINEAR � Linear blend of two bi-linear

sampled mipmaps. Also known as tri-linear filtering in 2D

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Setting Filter Modes

� Set texture filter modes with:

void glTexParameteri(GLenum target,
 GLenum pname, GLint param);

­ pname is either GL_TEXTURE_MAG_FILTER or
GL_TEXTURE_MIN_FILTER

­ param is one of the modes from the previous page

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Setting Filter Modes

� Texture filter anisotropy is controlled by setting
GL_TEXTURE_MAX_ANISOTROPY_EXT

­ Maximum amount of anisotropy is queried by
GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT to
glGetIntegerv

­ Requires that the extension
GL_EXT_texture_filter_anisotropic be

available

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Setting Mipmaps

� Mipmap is selected with the level parameter to
the glTexImage functions:

void glTexImage1D(GLenum target, GLint level,
 GLint internalFormat, GLsizei width,
 GLint border, GLenum format, GLenum type,
 const GLvoid *pixels);

­ Zero is the �base� level, 1 is ½ size, 2 is ¼ size, etc.

­ Textures that use mipmap filtering must be mipmap
complete

­ All mipmaps down to 1×1 that might be used must be
specified

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Mipmap Generation

� OpenGL can automatically generate the full set
of mipmaps each time the base level is modified

­ Set GL_GENERATE_MIPMAP to GL_TRUE

­ This causes the mipmap stack to be regenerated if
even one texel is modified in the base level!

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Mipmap Generation

� Later versions of GL add a different mechanism

void glGenerateMipmapEXT(GLenum target);

­ Generates mipmaps from base level to max level

­ Function only available if
GL_EXT_framebuffer_object is supported

­ Drop �EXT� from the name if OpenGL 3.0 or

GL_ARB_framebuffer_object is supported

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

LoD Clamping

� Used mipmaps can be restricted to a subset of
the possible range

­ GL_TEXTURE_BASE_LEVEL specifies the base level.

The default is zero.

­ GL_TEXTURE_MAX_LEVEL specifies the highest level

(smallest mipmap / lowest LoD) that will be used.

­ These settings also affect automatic mipmap
generation

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Next week...

� Texture mapping part 3

­ Quiz #4

­ Environment mapping

­ Projective texturing

­ Texture atlases

­ Texture compression

© Copyright Ian D. Romanick 2009, 2010

23-November-2011

Legal Statement

This work represents the view of the authors and does not necessarily rep-
resent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

