
CG Programming I – Assignment #2 (Lit cube scene)
19-October-2011

In this assignment, you will implement a simple scene containing several lit, animated cubes. This assignment is
divided into several parts. Each part is due in successive weeks.

1 Support Routines - due 26-October-2011
In the first part, you will implement a series of routines that will form the basis of the remaining parts. All of this will be
implemented in C / C++ code.

• Using the provided GLUvec4 and GLUmat4 classes, implement the following functions:

– rotate x axis - Calculate a matrix that rotates around the X axis by some specified angle.

– rotate y axis - Calculate a matrix that rotates around the Y axis by some specified angle.

– look at - Calculate a basis matrix from an eye position, a “look at” position, and an up direction.

– perspective - Calculate a perspective projection matrix given a field-of-view angle (for the Y dimension),
an aspect ratio, and near and far plane distances.

You may use the multiplication, addition, dot-product, and cross-product functions provided by the GLU3 li-
brary. You may also use the translation matrix (gluTranslate, etc.) functions. The code for these func-
tions is available in glu3 scalar.h. You may look at this code if you wish. You may not use the rota-
tion functions (gluRotate4v, etc.), look-at functions (gluLookAt4v, etc.), or perspective matrix functions
(gluPerspective4f, gluFrustum6f, etc.).

As you implement the matrix operations, implement unit test to verify the results. For example, the rotation routines
should produce predictable results at 0◦, 90◦, 180◦, 270◦, and 360◦. The look at function can be verified by com-
paring its result with the result of several simpler transformations (e.g., a series of rotations and translations) that are
composed together. The test functions should live in separate files and should have names like check rotation,
check cube, etc. These functions should always be called from main as early as possible. This will help identify
any bugs that you may introduce later.

It is strongly advisable, though not required, to implement the unit test before implementing the functions that they
test. Without an implementation, the unit tests should all fail. This technique is called test-driven development1.

2 Simple Scene - due 2-November-2011
The first part requires only a single cube rotating in the scene.

• Implement a routine that creates a buffer object and fills it with the vertexes of a cube. This code should use the
GLUcube class provided in the GLU3 library. You will need to implement a subclass of GLUshapeConsumer
to receive data from the GLUcube.

– Decide how to store vertex data for the cube. What data will be sotred for each vertex? What format will be
used?

– Decide how to store the element index data for the cube. What format will be used?

– Use GLUshape::vertex count to determine how much space is needed for the vertex data.

– Use GLUshape::element count to determine how much space is needed for the element index data.

– Create a buffer object with sufficient storage to hold all of the data.

– Use GLUshape::generate with your class derived from GLUshapeConsumer to store the data in the
buffer object.

1http://en.wikipedia.org/wiki/Test-driven_development

1



Figure 1: Arch of rotating cubes

• Implement a vertex shader that will transform incoming vertices by a model-view-projection matrix. The vertex
shader should also pass a per-vertex color through to the fragment shader.

• Implement a fragment shader that takes a color from the vertex shader and emits it as the fragment color.

• Implement a display routine that will render the cube rotated by some angle. glDrawElements will be used to
draw the data generated in the previous step. Do not use any other drawing function. The angle of rotation varies
by time. Pick some rotation speed, say 30◦ per second, and use the elapsed program time to deterine the rotation
angle each frame.

3 Complex Scene - due 9-November-2011
The second part requires several additions. Not only is the scene more complex, but a simple culling algorithm must be
implemented.

• Instead of a single cube, five cubes must be rendered. The cubes will start stacked in a column. Each cube will
rotate around the edge with a positive X value that it shares with the cube below it. This should look like an arm
bending. Each cube will repeatedly rotate from 0◦ to 45◦ and back. At full rotation the top cube will be at the same
level as the base cube. The five cubes will (roughly) form an arch. See figure 1.

• Implement simple view frustum culling. In the C / C++ code,

– Calculate a bounding sphere for each box. Transform the center of the bounding sphere by the model-view
matrix.

– Calculate the plane equations for the camera-space view volume. This is probably the most difficult step.

– Using the method described in the lecture notes to determine whether or not a sphere is inside the view volume.

– Do not render cubes associated with spheres that are outside the view volume.

– To test this, perform culling for a view volume that is much smaller then camera’s actual view volume. Using
half the actual field-of-view is a good choice. In addition, it is useful in this mode to have a hot key to enable
or disable the frustum culling.

For extra credit, draw all five cubes using a single call to glDrawElementsInstanced. The five transformation
matrices will be calculated in advance and passed to the vertex shader as an array (i.e., mat4 mvp[5];). The vertex
shader built-in variable gl InstanceID will be used to select the correct transformation for each instance.

2



4 Lighting - due 16-November-2011
The final part of the assignment is to add lighting to the scene. The majority of the code for this portion of the assignment
will be in GLSL.

• Supply per-vertex normals

– In addition to per-vertex position and color, specify per-vertex normals.

– Create a new attribute in the vertex shader called normal and pass the per-vertex normals in through
this attribute.

– In addition to passing in the model-view-projection matrix, pass the upper 3x3 portion of the model matrix.
Call this new matrix normal transform in the vertex shader.

– Transform the vertex normal by normal transform. Question to think about: what “space” is the trans-
formed normal in?

• Modify the vertex shader to perform per-vertex lighting.

– Supply the position of a point light to the vertex shader in a uniform called light pos. The point light
should orbit the cubes around the (world-space) Z-axis. The point light should be 8 units from the origin.

– Supply the direction of a directional light to the vertex shader in a uniform called light dir.

– Calculate the diffuse and specular lighting contributions for the point light.

– Calculate the diffuse and specular lighting contributions for the directional light.

– Combine the lighting from both lights with the vertex color. Pass the resulting color to the fragment shader in
a varying called color.

3



Criteria Excellent Good Satisfactory Unacceptable
Completion Program correctly im-

plements all required el-
ements in a manner that
is readily apparent when
the program is executed.
User interface is com-
plete and responsive to
input. Program doc-
uments user interface
functionality.

Program implements all
required elements, but
some elements may not
function correctly. User
interface is complete
and responsive to input.

Program implements
most required elements.
Some of the imple-
mented elements may
not function correctly.
User interface is com-
plete and responsive to
input.

Many required el-
ements are miss-
ing. User inter-
face is incomplete
or is not respon-
sive to input.

Correctness Program executes with-
out errors. Program
handles all special
cases. Program contains
error checking code.

Program executes with-
out errors. Program
handles most special
cases.

Program executes with-
out errors. Program
handles some special
cases.

Program does not
execute due to er-
rors. Little or
no error checking
code included.

Efficiency Program uses solution
that is easy to under-
stand and maintain.
Programmer has anal-
ysed many alternate
solutions and has cho-
sen the most efficient.
Programmer has in-
cluded the reasons for
the solution chosen.

Program uses an effi-
cient and easy to follow
solution (i.e., no confus-
ing tricks). Programmer
has considered alternate
solution and has chosen
the most efficient.

Program uses a logi-
cal solution that is easy
to follow, but it is not
the most efficient. Pro-
grammer has considered
alternate solutions.

Program uses
a difficult and
inefficient solu-
tion. Programmer
has not consid-
ered alternate
solutions.

Presentation &
Organization

Program code is format-
ted in a consistent man-
ner. Variables, func-
tions, and data struc-
tures are named in a log-
ical, consistent manner.
Use of white space im-
proves code readability.

Program code is format-
ted in mostly consistent
with occasional incon-
sistencies. Variables,
functions, and data
structures are named
in a logical, mostly
consistent manner. Use
of white space neither
helps or hurts code
reability.

Program code is format-
ted with multiple styles.
Variables, functions,
and data structures are
named in a logical but
inconsistent manner.
Use of white space
neither helps or hurts
code reability.

Program code is
formatted in an
inconsistent man-
ner. Variables,
functions, and
data structures are
poorly named.
Use of white
space hurts code
reability.

Documentation Code clearly and effec-
tively documented in-
cluding descriptions of
all global variables and
all non-obvious local
variables. The specific
purpose of each data
type is noted. The spe-
cific purpose of each
function is noted, as are
the input requirements
and output results.

Code documented in-
cluding descriptions of
most global variables
and most non-obvious
local variables. The
specific purpose of each
data type is noted. The
specific purpose of each
function is noted, as are
the input requirements
and output results.

Code documented
including descriptions
of the most important
global variables and the
most important local
variables. The specific
purpose of each data
type is noted. The
specific purpose of each
function is noted.

No useful docu-
mentation exists.

This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens University
(http://educ.queensu.ca/ compsci/assessment/Bauman.html).

4


