
© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

VGP351 � Week 2

� Agenda:

­ Getting data to the GPU

­ Buffer objects

­ Vertex attributes

­ Uniforms

­ Types of primitives

­ Transformations

­ Modeling

­ Viewing

­ Projection

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Graphics Pipeline

API

Primitive
Processing

Vertex Memory

Vertex
Shader

Primitive
Assembly

Rasterization
Fragment
Shader

Per-fragment
Operations

Framebuffer

Texture
Memory

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Graphics Pipeline

API

Primitive
Processing

Vertex Memory

Vertex
Shader

Primitive
Assembly

Rasterization
Fragment
Shader

Per-fragment
Operations

Framebuffer

Texture
Memory

GPU accesses
this data directly

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Memory Architecture

CPU

L2 / L3 Cache

Main Memory

Registers

L1 Cache

I/O Devices System Chipset

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Memory Architecture

CPU

L2 / L3 Cache

Main Memory

Registers

L1 Cache

GPU System Chipset

Video Memory

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Unified Memory Architecture

CPU

L2 / L3 Cache

Main Memory

Registers

L1 Cache

I/O Devices
System Chipset

GPU

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Memory Map

Main Memory

CPU

MMU

Physical Addresses

Virtual Addresses

GPU

AGP GART

Device
Virtual Addresses

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Memory Map

Main Memory

CPU

MMU

Physical Addresses

Virtual Addresses

GPU

AGP GARTGART

Device
Virtual Addresses

Graphics Address
Remapping Table

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Vertex Memory

� Practically, the GPU can only access:

­ Memory physically on the graphics card

­ Memory mapped in the GART

� Only the driver can provide GART or card
memory

­ The driver controls what's available to the GPU

­ The driver knows how much memory is available

­ The driver controls the GART mappings

­ The driver knows which memory pool to use

­ ...but we have to give it some hints

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Vertex Memory

� In OpenGL this memory is called buffer object

­ Used somewhat like a file:

­ Accessed via an opaque handle

­ Bulk I/O �accessor� routines

­ Direct mapping and access via a pointer

­ See http://en.wikipedia.org/wiki/Memory-mapped_file

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Buffer Objects

� Generate �names� for the buffer objects:

glGenBuffers(GLsizei num, GLuint *names);

� �Bind� a buffer for use:

glBindBuffer(GLenum target, GLuint name);

­ target selects which buffer we're talking about

­ GL_ARRAY_BUFFER is used for vertex data

­ GL_ELEMENT_ARRAY_BUFFER is used for vertex indices

­ More on that and other targets later in the term

­ Binding creates the object, but it still has no storage

­ Like creating an empty file

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Buffer Objects

� Storage is created and optionally initialized with:

void glBufferData(GLenum target,
 GLsizeiptr size, const GLvoid *data,
 GLenum usage);

­ usage tells the GL how the app will utilize the buffer

� Storage is updated with:

void glBufferSubData(GLenum target,
 GLintptr offset, GLsizeiptr size,
 const GLvoid *data);

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Buffer Object Usage Hints

� Usage conveys information along two axes:
­ Data �frequency�:

­ Stream � data is specified once and used a few times

­ Static � data is specified once and used many times

­ Dynamic � data is specified and used many times

­ Data �usage�:

­ Draw � data used as source for drawing

­ Read � data copied from GL and read back to client

­ Copy � data copied from GL and used as source for drawing

­ Combine these to create the enums (e.g.,
GL_STATIC_DRAW)

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Buffer Object Usage Hints

Call
glBufferData

Call
glDrawElements

Call
glDrawElements

Call
glDrawElements

Call
glDrawElements

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Buffer Object Usage Hints

Call
glBufferData

Call
glDrawElements

Call
glDrawElements

Call
glDrawElements

GL_STATIC_DRAW

Call
glDrawElements

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Buffer Object Usage Hints

Call
glBufferData

Call
glDrawElements

Call
glDrawElements

Call
glDrawElements

Call
glBufferData

Call
glBufferData

Call
glBufferData

Call
glDrawElements

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Buffer Object Usage Hints

Call
glBufferData

Call
glDrawElements

Call
glDrawElements

Call
glDrawElements

Call
glBufferData

Call
glBufferData

Call
glBufferData

GL_STREAM_DRAW

Call
glDrawElements

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Buffer Object Usage Hints

Call
glBufferData

Call
glDrawElements

Call
glDrawElements

Call
glDrawElements

Call
glDrawElements

Call
glBufferSubData

Call
glBufferSubData

Call
glBufferSubData

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Buffer Object Usage Hints

Call
glBufferData

Call
glDrawElements

Call
glDrawElements

Call
glDrawElements

Call
glBufferSubData

Call
glBufferSubData

Call
glBufferSubData

GL_DYNAMIC_DRAW

Call
glDrawElements

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Buffer Objects

� Memory backing the buffer can be mapped into
CPU space:

GLvoid *glMapBuffer(GLenum target,
 GLenum access);

­ access tells the driver how the application will access

the mapped buffer:

­ GL_READ_ONLY

­ GL_WRITE_ONLY

­ GL_READ_WRITE

� Unmap the buffer with:

GLboolean glUnmapBuffer(GLenum target);

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Now what?

� The vertex data is in a buffer object...how do we
tell the GPU know where to get it?

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Vertex Attribute Pointer

� Set the location and format of a vertex attribute
with:

void glVertexAttribPointer(GLuint index,
 GLint size, GLenum type,
 GLboolean normalized, GLsizei stride,
 const GLvoid *pointer);

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Vertex Attribute Pointer

� Set the location and format of a vertex attribute
with:

void glVertexAttribPointer(GLuint index,
 GLint size, GLenum type,
 GLboolean normalized, GLsizei stride,
 const GLvoid *pointer);

In the API,
attributes are

numbered

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Vertex Attribute Pointer

� Set the location and format of a vertex attribute
with:

void glVertexAttribPointer(GLuint index,
 GLint size, GLenum type,
 GLboolean normalized, GLsizei stride,
 const GLvoid *pointer);

Number of components
in each element

Type of data (e.g.,
GL_FLOAT)

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Vertex Attribute Pointer

� Set the location and format of a vertex attribute
with:

void glVertexAttribPointer(GLuint index,
 GLint size, GLenum type,
 GLboolean normalized, GLsizei stride,
 const GLvoid *pointer);

For integer data,
specifies whether it
is normalized or not

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Vertex Attribute Pointer

� Set the location and format of a vertex attribute
with:

void glVertexAttribPointer(GLuint index,
 GLint size, GLenum type,
 GLboolean normalized, GLsizei stride,
 const GLvoid *pointer);

Number of bytes from
the start of one element
to the start of the next

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Vertex Attribute Pointer

� Set the location and format of a vertex attribute
with:

void glVertexAttribPointer(GLuint index,
 GLint size, GLenum type,
 GLboolean normalized, GLsizei stride,
 const GLvoid *pointer);

Offset, in bytes, from the
start of the buffer where

the data starts

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Enable Attribute

� Attributes that will be used must also be
enabled:

void glEnableVertexAttribArray(GLuint index);

� Attributes can later be disabled:

void glDisableVertexAttribArray(GLuint index);

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Setting Attribute Numbers

� GLSL uses names for attributes:

attribute vec4 color;

� The API uses numbers:

void glVertexAttribPointer(GLuint index,
 GLint size, GLenum type,
 GLboolean normalized, GLsizei stride,
 const GLvoid *pointer);

� How do we connect the two?

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Setting Attribute Numbers

� Bind the attribute name to the index we want:

void glBindAttribLocation(GLuint programObj,
 GLuint index, const GLchar *name);

­ Can only call before linking the program

­ Changes to attribute locations do not take effect until
the program is linked (or linked again)

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Drawing

� Draw a series of vertices:

void glDrawArrays(GLenum mode, GLint first,
 GLsizei count);

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Drawing

� Draw a series of vertices:

void glDrawArrays(GLenum mode, GLint first,
 GLsizei count);

Sets the primitive type

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Drawing

� Draw a series of vertices:

void glDrawArrays(GLenum mode, GLint first,
 GLsizei count);

Selects which vertex
in the buffer to start

drawing with

Number of
vertices to draw

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Primitive Types

Image borrowed from �OpenGL Programming Guide�.

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Primitive Types

Image borrowed from �OpenGL Programming Guide�.

X X X

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Uniforms

� Data that changes at most per draw call

­ Set using glUniform and glUniformMatrix

commands

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Uniforms

� Single elements can be set:

void glUniform4f(GLint location, GLfloat v0,
 GLfloat v1, GLfloat v2, GLfloat v3);

­ Also 1f, 2f, 3f, 1i, 2i, 3i, and 4i variants

­ Number of fields and base type must match the uni-
form's type

­ 4f for vec4

­ 1i for int

­ etc.

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Uniforms

� Multiple array elements can be set:

void glUniform4fv(GLint location,
 GLsizei count, const GLint *value);

­ Also 1fv, 2fv, 3fv, 1iv, 2iv, 3iv, and 4iv variants

­ Number of fields and base type must match the uni-
form's type

­ count is the number of array elements to set

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Uniforms

� Matrices can be set:

void glUniformMatrix4fv(GLint location,
 GLsizei count, GLboolean transpose,
 const GLfloat *value)

­ Many variants for different matrix sizes

­ Size must match the dimension of the uniform

­ count is the number of matrices to set

­ transpose specifies whether the supplied data is

column-major or row-major

­ The OpenGL default is always column-major

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Uniform Locations

� What is this �location�?

void glUniform4fv(GLint location,
 GLsizei count, const GLfloat *value)

­ Like the index for attributes, but set by the linker in-
stead of the applicatoin

­ The linker assigns a slot for each active uniform

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Uniform Locations

� Query the location

GLint glGetUniformLocation(GLuint program,
 const GLchar *name);

­ program is a linked program object

­ name is the uniform to locate

­ Can be a scalar, vector, or matrix

­ Can be a whole array or an array element

­ Can be a field of a structure

­ Cannot be a whole structure.

­ Returns -1 if the requested uniform does not exist or
is not active

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Uniform Locations

// vertex shader
uniform vec4 v;
uniform mat4 m;
attribute vec4 a;

void main() {
 gl_Position = m * a;
}

// fragment shader
uniform vec3 c;

void main() {
 gl_FragData[0] =
 vec4(c, 1.0);
}

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Uniform Locations

// vertex shader
uniform vec4 v;
uniform mat4 m;
attribute vec4 a;

void main() {
 gl_Position = m * a;
}

// fragment shader
uniform vec3 c;

void main() {
 gl_FragData[0] =
 vec4(c, 1.0);
}

These uniforms are active.

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Uniform Locations

// vertex shader
uniform vec4 v;
uniform mat4 m;
attribute vec4 a;

void main() {
 gl_Position = m * a;
}

// fragment shader
uniform vec3 c;

void main() {
 gl_FragData[0] =
 vec4(c, 1.0);
}

These uniforms are active.

This uniform is not.

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

References

� More information about I/O MMUs in general:

http://en.wikipedia.org/wiki/IOMMU

� Nvidia whitepaper about using VBOs:

http://developer.nvidia.com/object/using_VBOs.html

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Linear Algebra Primer

� Three important data types:

­ Scalar values

­ Row / column vectors

­ 1x4 and 4x1 are the most common sizes

­ Square matrices

­ 4x4 is the most common size...to match the 1x4 & 4x1
vectors

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Notation

� Try to use the same notation as the textbook:

­ Angle: � (lower-case Greek)

­ Scalar: s (lower-case, italic, serif)

­ Vector or point: v (lower-case, bold, serif)

­ Sometimes û is used to differentiate vectors from points

­ Matrix: M (upper-case, bold, serif)

­ Plane: �: n�x + d (�: a vector and a scalar)

­ Triangle: �abc (� 3 points)

­ Line segment: ab (2 points)

­ Geometric entity: A (upper-case, italic, serif)

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Row Vectors

� These are special matrices that have multiple
columns but only one row

­ Example:

� Addition and subtraction is component-wise:

­ Example:

­ Both vectors must be the same size

� Operations with scalars also component-wise:

­ Example:

� Notice that vector multiplication is missing...

[5.0 3.14 37]

[1 2 3]�[9 10 11]=[10 12 14]

3.2×[1 2 3]=[3.2 6.4 9.6]

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Column Vectors

� These are special matrices that have multiple
rows but only one column

­ Example:

� Work just like row vectors

� Notationally convert a row to a column with a T
in the exponent

­ Example: vT

­ We'll talk more about this notation later...

[123]

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Vector Operations

� There are a few operations specific to vectors
that are really important to graphics:

­ Dot product

­ Vector magnitude / normalization

­ Cross product

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Dot Product

� Component-wise multiply, then sum components

­ Example:

­ Noted as u�v or �u, v�
­ Also known as the inner product or scalar product

[2.3 1.2]	[1.7 6.5]=
2.3�1.7��
1.2�6.5�=11.71

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Vector Magnitude

� Noted by vertical bars around the vector

­ Like absolute value...which is the scalar magnitude

­ Can also be thought of as the length of the vector

� Square-root of dot-product of vector with itself

­ Like absolute value

­ Example:
[�2

2

�2

2]
=�[�2

2

�2

2]	[�2

2

�2

2]=

�
 �2

2 �
2

�
 �2

2 �
2

=� 2

4
�

2

4
=1

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Normal

� Normal is an overloaded term in graphics and
linear algebra

­ Sometimes it means a vector has unit length

­ |u| = 1.0

­ Can say the vector is �normalized�

­ Sometimes it means a vector is perpendicular to a
surface or another vector

­ This mean the angle between the vectors is 90�
­ Can say that the vectors are �normal to each other�

­ Can say that the vectors are �orthogonal�

­ Can combine for even more fun!

­ �Use normalized surface normals in the calculation.�

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Normalize

� Can normalize a vector by dividing it by its
magnitude

­ Example:

­ Vector has the same direction, but the magnitude will
be 1.0

­ Also works with scalars

u

u

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Dot Product

� Why is the dot product so interesting?

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Dot Product

� Why is the dot product so interesting?

­ The dot product of two vectors is related to the cosine
of the angle between those vectors

­ Formally: u�v = |u| |v| cos �

� We often want to know the angle between two
vectors

­ This is the basis of all lighting calculations in 3D
graphics!

u	v

u

v

=

u

u

	

v

v

=cos�

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Cross Product

� From Wikipedia:

[T]he cross product is a binary operation on two vectors in a
three-dimensional Euclidean space that results in another vec-
tor which is perpendicular to the plane containing the two input
vectors.

­ Noted as an × between two vectors

­ Calculated as:

­ Not associative

­ Anti-commutative: If u×v = w, then v×u = -w

a×b=[ay bz�az by az bx�ax bz ax by�ay bx]

1 From http://en.wikipedia.org/wiki/Cross_product

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Cross Product

� Why is the cross product so interesting?

­ Cross product of two vectors results in a new vector
that is normal both

­ The cross product of two vectors is related to the sine
of the angle between the vectors

­ Formally: u×v = |u| |v| sin � n

�

n

u

v

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Matrices

� Like vectors, but have multiple rows and col-
umns

­ Example:

� Add and subtract like you would expect

­ Like vectors, both matrices must be the same size...in
both dimensions

[
1.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0

0.0 0.0 1.0 0.0

0.0 0.0 0.0 1.0
]

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Matrix Multiplication

� Special rules make matrix multiplication different
from scalar multiplication

­ NOT commutative! e.g., M×N � N×M

­ Associative e.g., A(BC) = (AB)C

­ Column count of first matrix must match row count of
second matrix

­ If M is 4-by-3 matrix and N is a 3-by-1 matrix, we
can do M×N but not N×M

­ If the source matrices are n-by-m and m-by-p, the re-
sulting matrix will be n-by-p

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Matrix Multiplication

� To calculate an element of the matrix, C,
resulting from AB:

� What does this look like?

Cij = �r=1

n
Air Brj

= A i ,0 B0, j�A i ,1 B1, j�A i ,2 B2, j�...�Ai ,n Bn , j

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Matrix Multiplication

� To calculate an element of the matrix, C,
resulting from AB:

� What does this look like?

­ The dot product of a row of A with a column of B!

­ This is why the column count of A must match the row
count of B...otherwise the dot product wouldn't work

Cij = �r=1

n
Air Brj

= A i ,0 B0, j�A i ,1 B1, j�A i ,2 B2, j�...�Ai ,n Bn , j

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Multiplicative Identity

� There is a multiplicative identity for matrices

­ Just like any other multiplicative identity, AI = A

­ If you pretend that a scalar is a 1×1 matrix, this
should make sense

I=[
1 0 � 0

0 1 �
� � 0

0 0 � 1
]

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Transpose

� Rows become columns and columns become
rows

­ Noted with a T in the exponent position (e.g., MT)

­ Example:

[2 3

4 5

6 7]
T

=[2 4 6

3 5 7]

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Matrix Multiplication

� Can rewrite the dot product (inner product) of
two row vectors as:

� Can write the outer product of two row vectors
as:

­ Notation is u�v

s=u v
T

M=u
T

v

u�v=[
u1 v1 u1 v2 u1 v3 ... u1 vn

u2 v1 u2 v2 u2 v3 ... u2 vn

� � � �
um v1 um v2 um v3 ... um vn

]

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Matrix Multiplication

� Not commutative

� But...

� How is this useful?

M×N�N×M

M×N=
NT×M
T �T

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Matrix Multiplication

� Not commutative

� But...

� How is this useful?

­ Assume v is a vector we want to transform by a matrix
M, but we only have MT in our program...

­ A vector and its transpose are represented the same
way (vec4 in GLSL), so we don't have to do the

transpose of the matrix

M×N�N×M

M×N=
NT×M
T �T

M×v=
 vT×M
T �T

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

References

http://en.wikipedia.org/wiki/Matrix_multiplication

http://en.wikipedia.org/wiki/Dot_product

http://en.wikipedia.org/wiki/Cross_product

http://en.wikipedia.org/wiki/Outer_product

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Rotation

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Rotation

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Rotation

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Rotation

x cos��y sin�
x sin�+y cos�

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Rotation

x ' = x cos��y sin�
y ' = x sin�+y cos�

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Rotation

x ' = x cos��y sin�
y ' = x sin�+y cos�

x ' = [cos� �sin�] 	 [x y]
y ' = [sin� cos�] 	 [x y]

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Rotation

x ' = x cos��y sin�
y ' = x sin�+y cos�

x ' = [cos� �sin�] 	 [x y]
y ' = [sin� cos�] 	 [x y]

[x '

y '] = [cos� �sin�
sin� cos�][xy]

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Rotation

� Rotation around the Z-axis

­ If � is 0�, this is the identity
matrix [

cos� �sin � 0 0

sin� cos� 0 0

0 0 1 0

0 0 0 1
]

[
cos� 0 sin� 0

0 1 0 0

�sin � 0 cos� 0

0 0 0 1
]

� Rotation around the Y-axis

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Rotation

� Why use the matrix method?

­ We can rotate using 4 multiplies and 2 adds

­ A matrix multiply requires 16 multiplies and 12 adds

x ' = x cos��y sin�
y ' = x sin�+y cos�
z ' = z

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Rotation

� A series of rotations can be implemented as:

� With substitution:

­ Why is this useful?

v ' = M1 v

v ' ' = M2 v '

v ' ' ' = M3 v ' '

v ' ' ' = M3 v ' '

= M3 (M2 v ')
= M3 (M2 (M1 v))

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Rotation

� A series of rotations can be implemented as:

� With substitution:

­ Matrix multiplication is associative!

v ' = M1 v

v ' ' = M2 v '

v ' ' ' = M3 v ' '

v ' ' ' = M3 v ' '

= M3 (M2 v ')
= M3 (M2 (M1 v))
= (M3 M2 M1) v

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Rotation

� A series of rotations can be implemented as:

� With substitution:

­ Matrix multiplication is associative!

v ' = M1 v

v ' ' = M2 v '

v ' ' ' = M3 v ' '

v ' ' ' = M3 v ' '

= M3 (M2 v ')
= M3 (M2 (M1 v))
= (M3 M2 M1) v

The matrices are
composed in the reverse
order of how they are
applied to the vector!

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Arbitrary Rotation

� Given a vector, v, and an angle, �, we can
create an arbitrary rotation matrix:

�V=[
0 �vz vy 0

vz 0 �vx 0

�v y v x 0 0

0 0 0 1
]

R=
I cos� ��

1�cos��
v�v� ��
 �V sin� �

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Translation

� Points are stored as p = [x y z 1]

� Remember the definition of matrix multiplication:

� Since p
w
 is always 1, the 4th column of the matrix

acts as a translation

px ' = px M11�py M12�pz M13�pw M14

py ' = px M21�py M22�pz M23�pw M24

pz ' = px M31�py M32�pz M33�pw M34

pw ' = px M41�py M42�pz M43�pw M44

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Scaling

� To scale a vector, multiply
each component by a scale
factor M=[

sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1
]

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Next week...

� Quiz #1

­ Will cover material from last week and this week

� More transformations

� Hidden surface removal / occlusion

­ Backface culling

­ Painters algorithm

­ Z-buffer

­ Frustum culling

� Assignment #2, part 1

© Copyright Ian D. Romanick 2009 - 2011

12-October-2011

Legal Statement

This work represents the view of the authors and does not necessarily rep-
resent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

