
CG Programming I – Assignment #1 (2D ellipses)

In this part of the assignment, you will implement a simple 2D graphics effect using GLSL shaders. Using
the fragment shader, draw a rotating grid of rotating ellipses. The ellipses and the rotation will be implemented
in a fragment shader. The screen will be drawn using a single draw call (two triangles to cover the entire
window). A fair amount of base code will be provided (please refer to the course website for links). A video of
the expected final output will be shown in class.

The assignment will be implemented in three parts. Each part will be due in successive weeks. The first,
part 0, is due at the end of class today.

Part 0: Due on 5-October-2011 by the end of class

Using the provided base code, implement a fragment shader that will draw a tiled screen of ellipses. Each
ellipse “tile” should be 100 pixels by 100 pixels. The radius of the major axis of each ellipse should be 50 pixels,
and the radius of the minor axis of each ellipse should be 25 pixels. Use either the X-axis or the Y-axis as the
ellipse’s major axis (and the other for the minor axis).

Implement this part in several steps:

• Download the base code and get it to compile.

• Implement a fragment shader that will output a constant color for all pixels. Put this shader in a text file
named ellipse.frag. This is the file name that base code expects to load from disk.

• Modify the fragment shader to draw a single ellipse. The only input available to your fragment shader is
gl FragCoord. This represents the location of the current fragment in the window. The lower-left corner
of the window is (0, 0). The fragment shader should use this coordinate and the equation of an ellipse to
determine whether each fragment is inside the ellipse or outside the ellipse. Output a different color for
each case.

In the equation of an ellipse, a and b are the lengths of the X and Y axes of the ellipse.

x2

a2
+

y2

b2
= 1

Since performing a division for every fragment is expensive, think about ways to implement this equation
efficiently.

• Modify the fragment shader to subdivide the window into 100x100 tiles.

Extra credit: The algorithm described above only generates two possible color values. Each pixel is either
inside the ellipse or outside the ellipse. The result is an image with unpleasing jaggy edges. This is called
aliasing and will be discussed at length later in the term. For pixels near the edge of the ellipse, the true edge
will actually pass through the pixel.

Each of these edge pixels is partially, or fractionally, covered by the ellipse. Knowledge of this fractional
coverage can be used to anti-alias the drawing by blending the inside and outside colors. For example, a pixel
that is 10% covered, should have 10% inside color and 90% outside color.

For extra credit, calculate the coverage factor and use the mix function to generate the weighted pixel color.
Calculating the coverage factor for ellipses is actually quite tricky. Be sure to include a clear description of the
calculation you use, and defend the reason you think it works. Incomplete solutions may earn some extra credit.

Turn in the extra credit portion with part 1.

Part 1: Due on 12-October-2011 at the start of class

Timed animation is a critical component of any real-time rendering application. Animations should play at
a consistent rate regardless of the rendered framerate. It would look awfully silly if a character’s walk cycle
played faster on a high-end computer than on a low-end computer.

In this part of the assignment you will modify the radii of the major and minor axis of the ellipses based on
the amount of elapsed time.

1



• Add a uniform to the fragment shader that represents the radii of the major and minor axis of the ellipses.
Initialize the value of the uniform in the shader with values to generate the same ellipses as before. Note:
You must declare #version 120 at the top of your shader.

• Add code to the base C++ code to get the “location” of the new uniform variable (using glGetUniformLocation).

• In the Redisplay function of the base code, set the uniform (likely using glUniform2f) to the same
values set in the initializer in the shader, and remove the initializer. The program should produce the
same output.

• In the Idle function in the base code, calculate new values for the radii based on the amount of elapsed
time. The radii should oscillate between 5 and 50. Use these values in Redisplay to set the uniform. The
sine and cosine functions can be used to produce a visually pleasing oscillation.

Part 2: Due on 19-October-2011

The final part is to make each ellipse rotate around the center of its grid cell and make the grid of cells
rotate around the center of the screen.

• Add a mat2 uniform to the fragment shader and initialize it to the identity matrix. Use this matrix to
rotate each ellipse around the center of its cell. Since the matrix only contains the identity, the output
should be the same.

• In the Idle function, generate a rotation angle that increases with a fixed rate based on elapsed time.

• In the Redisplay function, generate a 2 × 2 rotation matrix. Pass this matrix to the rotation matrix
uniform added in a previous step. Note: Be sure to set the transpose parameter to glUniformMatrix2fv
correctly depending on whether your matrix is stored in column-major (transpose is false) or row-major
(transpose is true) order.

• Repeat the previous steps (with different uniform names and matrix values), to make the cells rotate
around the center of the screen. Some changes will be necessary. Recall that the center of each cell is
(0, 0). This makes rotating around the center of the cell trivial. However, the center of the screen is not
(0, 0). On the screen, (0, 0) is at the lower left corner.

2



Criteria Excellent Good Satisfactory Unacceptable
Completion Program correctly im-

plements all required
elements in a manner
that is readily appar-
ent when the program
is executed. User
interface is complete
and responsive to in-
put. Program doc-
uments user interface
functionality.

Program implements
all required elements,
but some elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Program implements
most required ele-
ments. Some of the
implemented elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Many required
elements are
missing. User
interface is in-
complete or is
not responsive
to input.

Correctness Program executes
without errors. Pro-
gram handles all
special cases. Pro-
gram contains error
checking code.

Program executes
without errors. Pro-
gram handles most
special cases.

Program executes
without errors. Pro-
gram handles some
special cases.

Program does
not execute due
to errors. Lit-
tle or no error
checking code
included.

Efficiency Program uses solution
that is easy to under-
stand and maintain.
Programmer has anal-
ysed many alternate
solutions and has cho-
sen the most efficient.
Programmer has in-
cluded the reasons for
the solution chosen.

Program uses an ef-
ficient and easy to
follow solution (i.e.,
no confusing tricks).
Programmer has con-
sidered alternate solu-
tion and has chosen
the most efficient.

Program uses a log-
ical solution that is
easy to follow, but it is
not the most efficient.
Programmer has con-
sidered alternate solu-
tions.

Program uses
a difficult
and inefficient
solution. Pro-
grammer has
not consid-
ered alternate
solutions.

Presentation &
Organization

Program code is for-
matted in a consistent
manner. Variables,
functions, and data
structures are named
in a logical, consistent
manner. Use of white
space improves code
readability.

Program code is
formatted in mostly
consistent with occa-
sional inconsistencies.
Variables, functions,
and data structures
are named in a logi-
cal, mostly consistent
manner. Use of white
space neither helps or
hurts code reability.

Program code is for-
matted with multi-
ple styles. Variables,
functions, and data
structures are named
in a logical but incon-
sistent manner. Use
of white space neither
helps or hurts code re-
ability.

Program code
is formatted
in an inconsis-
tent manner.
Variables, func-
tions, and data
structures are
poorly named.
Use of white
space hurts code
reability.

Documentation Code clearly and ef-
fectively documented
including descriptions
of all global variables
and all non-obvious lo-
cal variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the input
requirements and out-
put results.

Code documented
including descrip-
tions of most global
variables and most
non-obvious local
variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the
input requirements
and output results.

Code documented
including descriptions
of the most important
global variables and
the most important
local variables. The
specific purpose of
each data type is
noted. The spe-
cific purpose of each
function is noted.

No useful doc-
umentation ex-
ists.

This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens
University (http://educ.queensu.ca/ compsci/assessment/Bauman.html).

3


