
© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

VGP351 � Week 1

� Agenda:

­ Course road-map

­ High-level graphics API overview

­ OpenGL

­ SDL

­ Graphics pipeline introduction

­ Shading language introduction

­ �Hello, world!�

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

What should you already know?

� C++ and object oriented programming

­ For most assignments you will need to implement
classes or portions of classes that conform to specific
interfaces

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

What should you already know?

� C++ and object oriented programming

­ For most assignments you will need to implement
classes or portions of classes that conform to specific
interfaces

� Graphics terminology and concepts

­ Polygon, pixel, texture, infinite light, point light, spot
light, etc.

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

What should you already know?

� C++ and object oriented programming

­ For most assignments you will need to implement
classes or portions of classes that conform to specific
interfaces

� Graphics terminology and concepts

­ Polygon, pixel, texture, infinite light, point light, spot
light, etc.

� Linear algebra and vector math

­ Matrix arithmetic

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

What will you learn?

� Create and use a window for OpenGL drawing

­ As a cross-platform graphics interface, OpenGL has
no knowledge of windows, mice, keyboards, etc.

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

What will you learn?

� Create and use a window for OpenGL drawing

­ As a cross-platform graphics interface, OpenGL has
no knowledge of windows, mice, keyboards, etc.

� Draw static and animated models

­ We'll use the OpenGL Shading Language (GLSL)

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

What will you learn?

� Create and use a window for OpenGL drawing

­ As a cross-platform graphics interface, OpenGL has
no knowledge of windows, mice, keyboards, etc.

� Draw static and animated models

­ We'll use the OpenGL Shading Language (GLSL)

� Basic techniques for lighting and shading

­ Shading: flat vs. Gouraud vs. Phong

­ Lighting: Lambertian vs. Phong vs. Blinn

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

What will you learn?

� Create and use a window for OpenGL drawing

­ As a cross-platform graphics interface, OpenGL has
no knowledge of windows, mice, keyboards, etc.

� Draw static and animated models

­ We'll use the OpenGL Shading Language (GLSL)

� Basic techniques for lighting and shading

­ Shading: flat vs. Gouraud vs. Phong

­ Lighting: Lambertian vs. Phong vs. Blinn

� Texture mapping

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

What will we not cover?

� �Fixed function� operations

­ Basically, anything not included in OpenGL ES 2.x

­ The only relevant devices today that do not support
programmable shaders are...

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

What will we not cover?

� �Fixed function� operations

­ Basically, anything not included in OpenGL ES 2.x

­ The only relevant devices today that do not support
programmable shaders are the iPhone 3G and the G1

­ The iPhone 3Gs supports OpenGL ES 2.0 and ES 1.1

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

What will we not cover?

� �Fixed function� operations

­ Basically, anything not included in OpenGL ES 2.x

­ The only relevant devices today that do not support
programmable shaders are the iPhone 3G and the G1

­ The iPhone 3Gs supports OpenGL ES 2.0 and ES 1.1

� Advanced lighting and animation techniques

­ That's VGP352

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

What will we not cover?

� �Fixed function� operations

­ Basically, anything not included in OpenGL ES 2.x

­ The only relevant devices today that do not support
programmable shaders are the iPhone 3G and the G1

­ The iPhone 3Gs supports OpenGL ES 2.0 and ES 1.1

� Advanced lighting and animation techniques

­ That's VGP352

� Shadows

­ That's VGP353

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

How will you be graded?

� Four bi-weekly quizzes

­ These are listed on the syllabus

� One final exam

� Eight graded programming projects

­ Something is due almost every week

­ Half of these will just be checked

­ Half of these will actually be graded

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

How will programs be graded?

� Does the program produce the correct output?

� Are appropriate algorithms and data-structures
used?

� Is the code readable, clear, and properly
documented?

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

How will programs be graded?

long h[4];t(){h[3]-=h[3]/3000;setitimer(0,h,0);}c,d,l,v[]={(int)t,0,2},w,s,I,K
=0,i=276,j,k,q[276],Q[276],*n=q,*m,x=17,f[]={7,-13,-12,1,8,-11,-12,-1,9,-1,1,
12,3,-13,-12,-1,12,-1,11,1,15,-1,13,1,18,-1,1,2,0,-12,-1,11,1,-12,1,13,10,-12,
1,12,11,-12,-1,1,2,-12,-1,12,13,-12,12,13,14,-11,-1,1,4,-13,-12,12,16,-11,-12,
12,17,-13,1,-1,5,-12,12,11,6,-12,12,24};u(){for(i=11;++i<264;)if((k=q[i])-Q[i]
){Q[i]=k;if(i-++I||i%12<1)printf("\033[%d;%dH",(I=i)/12,i%12*2+28);printf(
"\033[%dm "+(K-k?0:5),k);K=k;}Q[263]=c=getchar();}G(b){for(i=4;i--;)if(q[i?b+
n[i]:b])return 0;return 1;}g(b){for(i=4;i--;q[i?x+n[i]:x]=b);}main(C,V,a)char*
*V,*a;{h[3]=1000000/(l=C>1?atoi(V[1]):2);for(a=C>2?V[2]:"jkl pq";i;i--)*n++=i<
25||i%12<2?7:0;srand(getpid());system("stty cbreak -echo stop u");sigvec(14,v,
0);t();puts("\033[H\033[J");for(n=f+rand()%7*4;;g(7),u(),g(0)){if(c<0){if(G(x+
12))x+=12;else{g(7);++w;for(j=0;j<252;j=12*(j/12+1))for(;q[++j];)if(j%12==10){
for(;j%12;q[j--]=0);u();for(;--j;q[j+12]=q[j]);u();}n=f+rand()%7*4;G(x=17)||(c
=a[5]);}}if(c==*a)G(--x)||++x;if(c==a[1])n=f+4**(m=n),G(x)||(n=m);if(c==a[2])G
(++x)||--x;if(c==a[3])for(;G(x+12);++w)x+=12;if(c==a[4]||c==a[5]){s=sigblock(
8192);printf("\033[H\033[J\033[0m%d\n",w);if(c==a[5])break;for(j=264;j--;Q[j]=
0);while(getchar()-a[4]);puts("\033[H\033[J\033[7m");sigsetmask(s);}}d=popen(
"stty -cbreak echo stop \023;sort -mnr -o HI - HI;cat HI","w");fprintf(d,
"%4d from level %1d by %s\n",w,l,getlogin());pclose(d);}

1 From http://homepages.cwi.nl/~tromp/tetris.html

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

Class Web Site

� Syllabus, assignments, and base code:

http://people.freedesktop.org/~idr/2011Q4-VGP351/

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

10,000 Foot OpenGL Overview

� Created by SGI due to industry demand for a
standard more open than Iris GL

­ Originally controlled by the OpenGL Architecture
Review Board (ARB)

­ Now controlled by the Khronos Group

� Member companies create and vote on changes
to the specification

19
92

19
97

19
98

20
01

20
02

1.0 1.1 1.2 1.3 1.4 1.5

20
03

20
04

20
06 20
08

20
09

20
10

2.0 2.1 3.0 3.1

3.2

3.3 / 4.0

19
94

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

OpenGL Versions

1.x: Configurable
pipeline

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

OpenGL Versions

1.x: Configurable
pipeline

2.x: Programmable pipeline

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

OpenGL Versions

1.x: Configurable
pipeline

2.x: Programmable pipeline

3.x: Flexible buffer programmability

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

OpenGL Versions

1.x: Configurable
pipeline

2.x: Programmable pipeline

3.x: Flexible buffer programmability

4.x: Compute and tesselation

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

OpenGL Shading Language Versions

� The shading language has evolved through time
as well...

­ GLSL versions generally matched with GL versions

19
92

19
97

19
98

20
01

20
02

1.00

20
03

20
04

20
06 20
08

20
09

20
10

1.10 1.20 1.301.40

1.50

3.30 / 4.00

1.00 ES

19
94

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

OpenGL Shading Language Versions

� The shading language has evolved through time
as well...

­ GLSL versions generally matched with GL versions

19
92

19
97

19
98

20
01

20
02

1.00

20
03

20
04

20
06 20
08

20
09

20
10

1.10 1.20 1.301.40

1.50

3.30 / 4.00

1.00 ES

We're going to focus
on these versions

19
94

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

OpenGL Design Principles

� OpenGL is a low-level, device independent,
platform independent graphics hardware
interface

� From The Design of the OpenGL Graphics Inter-
face, by Mark Segal and Kurt Akeley:

�An essential goal of OpenGL is to provide device independence

while still allowing complete access to hardware functionality. The
API therefore provides access to graphics operations at the lowest
possible level that still provides device independence.�

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

OpenGL Design Principles (cont.)

� Based on a client-server model

­ Shows its Unix / X-Windows origins

­ Client (application program) and server (rendering program)
were running on different computers

­ Still works!

­ Client (application program) and server (firmware on the gfx
card) are different computers

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

OpenGL Design Principles (cont.)

� The GL is a state machine with a push model

­ Clients send commands that change server state

­ At any time the current state determines what / how objects
are rendered

­ Clients send data to the server for rendering

­ Very rarely does data come back from the server

­ So-called �round trips� typically cause rendering stalls or
other performance problems

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

OpenGL Conventions

� OpenGL has a very specific set of naming
conventions

­ Each function, type, or enumerant must adhere to a
set of rules defined in the spec

­ Some of these conventions make up for the fact that
C does not have function overloading

­ Some of these conventions hide platform-dependent
details

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

OpenGL Conventions: Types

� Data type names...

­ Begin with GL

­ Have an associated function suffix

­ More on this later

­ Have a defined bit-size

­ The bit-size is the same on all platforms

­ Integer types may be signed or unsigned

­ Unsigned types get a u after the GL

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

OpenGL Conventions: Types

GL Type Name Common C Type Bit-size Notes

char 8-bits

short 16-bits

int 32-bits

unsigned char 8-bits

unsigned short 16-bits

unsigned int 32-bits

float 32-bits Single precision float

double 64-bits Double precision float

unsigned char 8-bits

float 32-bits Implies range [0, 1]

GLbyte
GLshort

GLint May be long
GLubyte

GLushort
GLuint May be unsigned long

GLfloat
GLdouble

GLboolean
GLclampf

­ See page 14 of the OpenGL 3.0 spec for the com-
plete list of types

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

OpenGL Conventions: Enumerants

� Enumerant (enum for short) names...

­ Begin with GL_

­ Are all upper-case

­ Separate words with underscores

� When passed as function parameters, enums
have the type GLenum

� Examples:

­ GL_VERTEX_SHADER, GL_ARRAY_BUFFER,
GL_TRIANGLES

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

OpenGL Conventions: Functions

� Function names...

­ Begin with gl

­ Begin new words with a capital letter

­ Sometimes called �camel case�

­ Remaining letters in words are lower-case

­ May have suffixes that specify the type and count of
parameters

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

OpenGL Conventions: Functions

� Single-signature function examples:

­ glClear, glDrawArrays, glCompileShader

� Multi-signature function examples:

glUniform2f(GLuint n, GLfloat x, GLfloat y);

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

OpenGL Conventions: Functions

Specifies the number of parameters

� Single-signature function examples:

­ glClear, glDrawArrays, glCompileShader

� Multi-signature function examples:

glUniform2f(GLuint n, GLfloat x, GLfloat y);

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

OpenGL Conventions: Functions

Specifies the type of parameters

� Single-signature function examples:

­ glClear, glDrawArrays, glCompileShader

� Multi-signature function examples:

glUniform2f(GLuint n, GLfloat x, GLfloat y);

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

OpenGL Conventions: Functions

� Single-signature function examples:

­ glClear, glDrawArrays, glCompileShader

� Multi-signature function examples:

glUniform2f(GLuint n, GLfloat x, GLfloat y);

glTexParameteri(GLenum target, GLenum pname,
 GLint param);

glTexParameteriv(GLenum target, GLenum pname,
 const GLint *param);

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

OpenGL Conventions: Functions

� Single-signature function examples:

­ glClear, glDrawArrays, glCompileShader

� Multi-signature function examples:

glUniform2f(GLuint n, GLfloat x, GLfloat y);

glTexParameteri(GLenum target, GLenum pname,
 GLint param);

glTexParameteriv(GLenum target, GLenum pname,
 const GLint *param);

Specifies �vectored� parameters

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

References

� General OpenGL and OpenGL specs:

http://www.opengl.org/

http://www.opengl.org/documentation/specs/

� The International Obfuscated C Code Contest:

http://www.ioccc.org/

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

What OpenGL does not do

� OpenGL only provides access to 3D graphics
hardware functionality

� Common functionality that is outside its scope:

­ Loading 3D model files

­ Loading image files

­ Processing input

­ Opening windows

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

Window System Interface

� OpenGL is a low-level, device independent,
platform independent graphics hardware
interface

­ Window management and user I/O fall under the
purview of the underlying operating system

­ A platform-dependent window system interface
connects window system entities with OpenGL

­ Windows has WGL, X-Windows has GLX, Mac OS X has
CGL, and embedded systems have EGL

­ Cross-platform apps commonly use separate libraries
to bridge these differences

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

SDL Introduction

�Simple DirectMedia Layer is a cross-platform
multimedia library designed to provide low level
access to audio, keyboard, mouse, joystick, 3D
hardware via OpenGL, and 2D video
framebuffer.1�

� What does that mean for us?

­ Lots of web sites have OpenGL example code that
uses SDL

­ We don't have to learn how to work directly with
Windows for windows or user I/O

­ I use Linux, so code that I write will be useful to you
1 From http://www.libsdl.org/

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

SDL Introduction (cont.)

� SDL gives us a platform independent way to
interact with platform-dependent issues

­ OpenGL makes the 3D part platform-independent, but
that's it

­ At the very least, we need to open a window and
process some keyboard input

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

Using SDL

� Initialize the SDL library:

if (SDL_Init(SDL_INIT_VIDEO | SDL_INIT_TIMER) != 0) {
 exit(1);
}
atexit(SDL_Quit);

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

Using SDL � Creating a Surface

� Tell SDL what sort of window is needed:

­ Set window size, color depth, etc.

­ Use SDL_GL_SetAttribute
/* Request at least 8-bits of red. */
SDL_GL_SetAttribute(SDL_GL_RED_SIZE, 8);

/* Request at least 8-bits of alpha. */
SDL_GL_SetAttribute(SDL_GL_ALPHA_SIZE, 8);

/* Request a double buffered surface. */
SDL_GL_SetAttribute(SDL_GL_DOUBLEBUFFER, 1);

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

Using SDL � Creating a Surface

� After describing the window, open it

­ Specify a couple more attributes

­ Use SDL_SetVideoMode
/* Open a double-buffered 640x480 window. Use
 * the default color depth (set previously).
 */
SDL_SetVideoMode(640, 480, 0,
 (SDL_OPENGL
 | SDL_RESIZABLE));

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

Using SDL � Creating a Surface

� After describing the window, open it

­ Specify a couple more attributes

­ Use SDL_SetVideoMode
/* Open a double-buffered 640x480 window. Use
 * the default color depth (set previously).
 */
SDL_SetVideoMode(640, 480, 0,
 (SDL_OPENGL
 | SDL_RESIZABLE));

Enable OpenGL
rendering

Allow the user to
resize the window

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

Using SDL � Events

� SDL provides input as a series of events

­ SDL_WaitEvent blocks until an event is received

­ SDL_PollEvent always returns immediately

� Each event has a type

­ Key press events have type SDL_KEYDOWN

­ If no real event is available, the event type returned
by SDL_PollEvent is SDL_NOEVENT

� Events may have a data payload depending on
the type

­ Keycode of the pressed key, etc.

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

Using SDL � Events

SDL_PollEvent(&e);
switch (e.type) {
case SDL_KEYDOWN: {
 switch (e.key.keysym.sym) {
 case 'q':
 exit(0);
 }
 break;
}

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

Using SDL � Timers

� Set a timer to trigger a callback function

SDL_TimerID timer_id =
 SDL_AddTimer(10, timer_callback, data);
if (timer_id == NULL)
 /* … error path … */

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

Using SDL � Timers

� Set a timer to trigger a callback function

SDL_TimerID timer_id =
 SDL_AddTimer(10, timer_callback, data);
if (timer_id == NULL)
 /* … error path … */

This function is called every
10ms and is passed this
parameter

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

Using SDL � Timers

� We really want a timer event

­ Generate an event from the timer callback!

Uint32 timer_callback(Uint32 interval, void *not_used)
{
 SDL_Event e;

 e.type = SDL_USEREVENT;
 e.user.code = 0;
 e.user.data1 = NULL;
 e.user.data2 = NULL;
 SDL_PushEvent(& e);

 return interval;
}

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

Using SDL � Timers

� To play animations, we need to know how much
time has elapsed since the last frame

­ We may have rotations that are measured in �degrees
per second�

static Uint32 t0 = ~0;
…
Uint32 ticks = SDL_GetTicks();
Uint32 delta = (t0 != (Uint32)~0) ? (ticks – t0) : 0;
float dt = float(delta) / 1000.0;

t0 = ticks;

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

References

Tutorial for SDL for OpenGL:

http://gpwiki.org/index.php/C:SDL_OGL

Tutorial for SDL for OpenGL on Mac OS X:

http://www.meandmark.com/sdlopenglpart1.html

Comparison of OpenGL window system interfaces:

http://www.mesa3d.org/brianp/sig97/compare.htm

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

Graphics Pipeline

API

Primitive
Processing

Vertex Memory

Vertex
Shader

Primitive
Assembly

Rasterization
Fragment
Shader

Per-fragment
Operations

Framebuffer

Texture
Memory

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

Graphics Pipeline

API

Primitive
Processing

Vertex Memory

Vertex
Shader

Primitive
Assembly

Rasterization
Fragment
Shader

Per-fragment
Operations

Framebuffer

Texture
Memory

Memory buffers with
data controlled by the
application

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

Graphics Pipeline

API

Primitive
Processing

Vertex Memory

Vertex
Shader

Primitive
Assembly

Rasterization
Fragment
Shader

Per-fragment
Operations

Framebuffer

Texture
Memory

Stages directly
programmed by
the application

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

Graphics Pipeline

API

Primitive
Processing

Vertex Memory

Vertex
Shader

Primitive
Assembly

Rasterization
Fragment
Shader

Per-fragment
Operations

Framebuffer

Texture
Memory

Stages configurable
by the application

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

Pipeline Data Flow

Varyings

Vertex Shader

Fragment Shader

Per-sample
Operations

Primitive
assembly

& rasterization

Pixels

Vertex
Uniforms

Fragment
Uniforms

Fragment
Textures

Vertex
Textures

Attributes

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

Vertex Shader Environment

Vertex
Shader

Vertex attribute 0

Uniforms Textures

Varying 0

Vertex attribute 1

Vertex attribute 2

Vertex attribute m

Varying 1

Varying 2

Varying n

Position

Point size

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

Fragment Shader Environment

Fragment
Shader

Varying 0

Uniforms Textures

Fragment ColorsVarying 1

Varying m Fragment Depth

Window Pos.

Point Coordinate

Facing

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

GLSL � Basic Types

� 2-, 3-, and 4-element vectors of various basic
types:

­ bool � bvec2 bvec3 bvec4

­ int � ivec2 ivec3 ivec4

­ float � vec2 vec3 vec4

� 2x2, 3x3, and 4x4 float matrices

­ mat2 mat3 mat4

­ Other matrix types require GLSL 1.20

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

GLSL � Type Qualifiers

� uniform � Shader inputs that are constant

across a primitive group

� attribute � Vertex shader inputs specified

per-vertex

� varying � Vertex outputs (fragment inputs) that

are interpolated across primitives

� const � Local constants defined within a

particular shader

­ Like uniform, but the value is specified in the code

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

GLSL � Operators

� The usual C / C++ assortment:

­ Grouping: ()

­ Array indexing: []

­ Component / member selection: .

­ Unary: ++ – + - !

­ Binary: * / + -

­ Relational: < <= > >= == !=

­ Selection: ?:

­ Logical: && ^^ ||

­ Sequence: ,

­ Assignment: = *= /= += -=

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

GLSL � Flow Control

� for, while, and do while loops

­ Also break and continue

� if else

� Function calls

­ Also return

� discard
­ Terminates processing of the current fragment

­ More on this later in the term

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

GLSL � Functions

� Functions behave more like FORTRAN than C

­ No recursion at all

­ Parameters are pass-by-value, with optional copy-out

­ Extra qualifiers control parameter passing:

­ in: Parameter is copied in but not out. This is the default.

­ const in: Parameter is copied in but cannot be modified

­ May help the compiler generate better code

­ out: Parameter is copied out but not in

­ inout: Parameter is copied in and out

­ Functions can return a value

­ Or void

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

GLSL � Functions

� Pass-by value: after foo returns, what is the val-
ue of x?

void foo(/* in */ float a)
{
 a += 5.0;
}

void main()
{
 float x = 8.0
 foo(x);
 /* What is the value of “x” here? */
}

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

GLSL � Functions

� Pass-by value: after foo returns, what is the val-
ue of x?

void foo(/* in */ float a)
{
 a += 5.0;
}

void main()
{
 float x = 8.0
 foo(x);
 /* “x” is still 8.0 */
}

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

GLSL � Functions

� Pass-by value w/copy-out: after foo returns, what
is the value of x?

void foo(out float a)
{
 a += 5.0;
}

void main()
{
 float x = 8.0
 foo(x);
 /* What is the value of “x” here? */
}

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

GLSL � Functions

� Pass-by value w/copy-out: after foo returns, what
is the value of x?

void foo(out float a)
{
 a += 5.0;
}

void main()
{
 float x = 8.0
 foo(x);
 /* Indeterminate! */
}

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

GLSL � Functions

� Pass-by value w/copy-out: after foo returns, what
is the value of x?

void foo(inout float a)
{
 a += 5.0;
}

void main()
{
 float x = 8.0
 foo(x);
 /* What is the value of “x” here? */
}

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

GLSL � Functions

� Pass-by value w/copy-out: after foo returns, what
is the value of x?

void foo(inout float a)
{
 a += 5.0;
}

void main()
{
 float x = 8.0
 foo(x);
 /* “x” is 13.0 */
}

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

GLSL � Functions

� Pass-by value w/copy-out: after foo returns, what
is the value of x?

void foo(inout float a, inout float b)
{
 a += 5.0;
 b += 10.0;
}

void main()
{
 float x = 8.0
 foo(x, x);
 /* What is the value of “x” here? */
}

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

GLSL � Functions

� Pass-by value w/copy-out: after foo returns, what
is the value of x?

void foo(inout float a, inout float b)
{
 a += 5.0;
 b += 10.0;
}

void main()
{
 float x = 8.0
 foo(x, x);
 /* “x” is either 13.0 or 18.0 */
}

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

GLSL

And now for the stuff that is not like C...

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

GLSL � Constructors

� C++-like constructor syntax for vectors, matrices,
and structures:
vec4 color = vec4(1.0, 1.0, 1.0, 0.5);
struct foo { vec2 coord; float intensity; };
foo bar = foo(vec2(0.3, 0.6), 1.0);

� And arrays...
vec2 data[] = vec2 [] (vec2(1.0, 1.0),
 vec2(0.5, 0.5));

� And almost all type conversions...
float x = calculate_something();
bool y = bool(x);

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

GLSL � Constructors

� Vector and matrix constructors just need the
right number of components:
void foo(vec2 a, vec2 b)
{
 vec4 c = vec4(a, b);
 …
}

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

GLSL � Swizzles

� Components of a vector can have one of three
component names:

­ x, y, z, w � Used for positions

­ r, g, b, a � Used for colors

­ s, t, p, q � Used for texture coordinates

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

GLSL � Swizzles

� Use to reorder or replicate data:
vec4 x;
vec2 y;

y = x.zw;
x = y.rgrg;
x = y.x; // illegal
x = y.zw; // illegal
y = x.sw; // illegal

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

GLSL � Swizzles

� Use to reorder or replicate data:
vec4 x;
vec2 y;

y = x.zw;
x = y.rgrg;
x = y.x; // illegal
x = y.zw; // illegal
y = x.sw; // illegal

Note: 4-components
from a 2-component
vector!

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

GLSL � Swizzles

� Use to mask and reorder writes:
vec4 x;
vec2 y;

y.x = x.w;
x.wz = y.rg;
y.w = x.x; // illegal
x.xx = y; // illegal
x.yz = y.rrr;// illegal

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

References

� OpenGL ES 2.0 & GLSL ES 1.00 quick ref:

http://tinyurl.com/3vvyw5g

� OpenGL 3.2 & GLSL 1.50 quick ref:

http://www.khronos.org/files/opengl-quick-reference-card.pdf

� GLSL language spec

http://www.opengl.org/registry/

� A couple diagrams earlier were adapted from
Benj Lipchak's presentation at:

http://people.freedesktop.org/~idr/GLSL_presentation/

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

Next week...

� Input data

­ Vertex buffers

­ Uniforms

� Transformations

­ Modeling

­ Viewing

­ Projection

© Copyright Ian D. Romanick 2009 - 2011

5-October-2011

Legal Statement

This work represents the view of the authors and does not necessarily rep-
resent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

