
© Copyright Ian D. Romanick 2009, 2011 9-February-2011

VGP353 – Week 5

⇨ Agenda:
 Quiz #2
 Stencil-buffer refresher
 Theory of shadow volumes
 Generating shadow volume geometry

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Stencil Buffer

⇨ Extra per-pixel buffer containing integer values
 Stencil test and stencil operation occur after per-

fragment operations and before depth testing

Fragment
shader

Stencil Test

Stencil ref. value

Stencil mask

Stencil OpPass

F
ail

Depth Test

Current stencil value

Pass

F
ail

Stencil write mask

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Stencil Buffer

⇨ Stencil function is one GL's usual comparators
 GL_NEVER, GL_LESS, GL_EQUAL, GL_LEQUAL,

GL_GREATER, GL_NOTEQUAL, GL_GEQUAL,
GL_ALWAYS

 Performs bit-wise operations of (stencil & mask)
func (ref & mask)

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Stencil Buffer

glStencilFuncSeparate(
GLenum face,
GLenum func,
GLint ref,
GLuint mask);

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Stencil Buffer

glStencilFuncSeparate(
GLenum face,
GLenum func,
GLint ref,
GLuint mask);

Polygon facing selector:
different operations for front
and back facing polygons

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Stencil Buffer

glStencilFuncSeparate(
GLenum face,
GLenum func,
GLint ref,
GLuint mask);

Comparison function

Polygon facing selector:
different operations for front
and back facing polygons

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Stencil Buffer

glStencilFuncSeparate(
GLenum face,
GLenum func,
GLint ref,
GLuint mask);

Comparison function

Reference value used in
comparison

Polygon facing selector:
different operations for front
and back facing polygons

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Stencil Buffer

glStencilFuncSeparate(
GLenum face,
GLenum func,
GLint ref,
GLuint mask);

Comparison function

Reference value used in
comparison

Bit-wise mask used on
values before comparison

Polygon facing selector:
different operations for front
and back facing polygons

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Stencil Buffer

glStencilFuncSeparate(
GLenum face,
GLenum func,
GLint ref,
GLuint mask);

Comparison function

Reference value used in
comparison

Bit-wise mask used on
values before comparison

Polygon facing selector:
different operations for front
and back facing polygons

⇨ Passing GL_FRONT_AND_BACK for face acts
like GL 1.x glStencilFunc function

 Radeon r300 (e.g., Radeon 9800) needs front and
back ref and mask to be the same

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Stencil Operation

⇨ Stencil buffer values are modified per-fragment
depending on the state of the fragment:

 Fragment failed the stencil test
 Fragment passed the stencil test but failed the depth

test
 Fragment passed the stencil test and passed the

depth test

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Stencil Operation

⇨ Eight possible operations:
 GL_KEEP – Keep existing value

 GL_ZERO – Set value to zero

 GL_REPLACE – Replace value with a reference value

 GL_INCR – Increment value, clamp to max
 GL_INCR_WRAP – Increment value, wrap to zero

 GL_DECR – Decrement value, clamp to zero
 GL_DECR_WRAP – Decrement value, wrap to max

 GL_INVERT – Bitwise inversion of value

⇨ Result is always masked with the stencil mask

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Stencil Buffer

glStencilOpSeparate(
GLenum face,
GLenum sfail,
GLenum dfail,
GLenum dpass);

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Stencil Buffer

glStencilOpSeparate(
GLenum face,
GLenum sfail,
GLenum dfail,
GLenum dpass);

Polygon facing selector:
different operations for front
and back facing polygons

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Stencil Buffer

glStencilOpSeparate(
GLenum face,
GLenum sfail,
GLenum dfail,
GLenum dpass);

Operation when stencil test
fails

Polygon facing selector:
different operations for front
and back facing polygons

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Stencil Buffer

glStencilOpSeparate(
GLenum face,
GLenum sfail,
GLenum dfail,
GLenum dpass);

Operation when stencil test
fails
Operation when stencil test
passes but depth test fails

Polygon facing selector:
different operations for front
and back facing polygons

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Stencil Buffer

glStencilOpSeparate(
GLenum face,
GLenum sfail,
GLenum dfail,
GLenum dpass);

Operation when stencil test
fails
Operation when stencil test
passes but depth test fails

Operation when stencil and
depth tests pass

Polygon facing selector:
different operations for front
and back facing polygons

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Stencil Buffer

glStencilOpSeparate(
GLenum face,
GLenum sfail,
GLenum dfail,
GLenum dpass);

Operation when stencil test
fails
Operation when stencil test
passes but depth test fails

Operation when stencil and
depth tests pass

Polygon facing selector:
different operations for front
and back facing polygons

⇨ Passing GL_FRONT_AND_BACK for face acts
like GL 1.x glStencilOp function

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Stencil Buffer

⇨ Stencil buffer can also be cleared
 glClearStencil sets the cleared value

 Pass GL_STENCIL_BUFFER_BIT to glClear
 If depth and stencil are used, always clear both

together

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Stencil Buffer

⇨ Writing of particular bits can be controlled with
glStencilMaskSeparate

 Passing GL_FRONT_AND_BACK for face parameter
acts like GL 1.x glStencilMask function

 Radeon r300 (e.g., Radeon 9800) needs front and
back mask to be the same

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Stencil Buffer – Example

glClearStencil(0);
glClear(GL_STENCIL_BUFFER_BIT);
glEnable(GL_STENCIL_TEST);

// Write 1 to stencil where polygon is drawn.
glStencilFuncSeparate(GL_FRONT_AND_BACK, GL_ALWAYS, 1, ~0);
glStencilOpSeparate(GL_FRONT_AND_BACK,
 GL_KEEP, GL_KEEP, GL_REPLACE);
draw_some_polygon();

// Draw scene only where stencil buffer is 1.
glStencilFuncSeparate(GL_FRONT_AND_BACK, GL_EQUAL, 1, ~0);
glStencilOpSeparate(GL_FRONT_AND_BACK,
 GL_KEEP, GL_KEEP, GL_KEEP);
draw_scene();

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Stencil Buffer – Window System

⇨ Stencil buffer is often stored interleaved with
depth buffer

 8-bit stencil with 24-bit depth is most common
 Other combinations such as 1-bit stencil with 15-bit

depth do exist (very, very rare these days)

⇨ Must request a stencil buffer with your window
 With SDL, this means setting the stencil size attribute

to the minimum number of stencil bits required
SDL_GL_SetAttribute(SDL_GL_STENCIL_SIZE, 4);

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Stencil Buffer – FBOs

⇨ Stencil buffers can also be used with framebuffer
objects

 Create with glRenderbufferStorage and an
internal type of GL_STENCIL_INDEX

 Sized types are also available
 There are no stencil textures

 Attach to GL_STENCIL_ATTACHMENT

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Stencil Buffer – FBOs

⇨ If depth and stencil are required:
 Create renderbuffer or texture with internal type of

GL_DEPTH_STENCIL
 One sized type of GL_DEPTH24_STENCIL8

 type parameter must be GL_UNSIGNED_INT_24_8
 Treated as a depth texture for texturing

 Bind same object to both the depth and stencil
attachments

 Added with OpenGL 3.0,
GL_ARB_framebuffer_objects, or
GL_EXT_packed_depth_stencil

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Stencil Buffer – FBO Example

glGenFramebuffers(1, &fb);
glGenTextures(2, tex_names);

// Setup color texture (mipmap)
glBindTexture(GL_TEXTURE_2D, tex_names[0]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB8, 512, 512, 0, GL_RGBA, GL_INT, NULL);
glGenerateMipmap(GL_TEXTURE_2D);

// Setup depth_stencil texture (not mipmap)
glBindTexture(GL_TEXTURE_2D, tex_names[1]);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH24_STENCIL8, 512, 512, 0,
 GL_DEPTH_STENCIL, GL_UNSIGNED_INT_24_8, NULL);

glBindFramebuffer(GL_FRAMEBUFFER_EXT, fb);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
 GL_TEXTURE_2D, tex_names[0], 0);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
 GL_TEXTURE_2D, tex_names[1], 0);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT,
 GL_TEXTURE_2D, tex_names[1], 0);

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Stencil Buffer – FBO Example

glGenFramebuffers(1, &fb);
glGenTextures(2, tex_names);

// Setup color texture (mipmap)
glBindTexture(GL_TEXTURE_2D, tex_names[0]);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB8, 512, 512, 0, GL_RGBA, GL_INT, NULL);
glGenerateMipmap(GL_TEXTURE_2D);

// Setup depth_stencil texture (not mipmap)
glBindTexture(GL_TEXTURE_2D, tex_names[1]);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexImage2D(GL_TEXTURE_2D, 0, GL_DEPTH24_STENCIL8, 512, 512, 0,
 GL_DEPTH_STENCIL, GL_UNSIGNED_INT_24_8, NULL);

glBindFramebuffer(GL_FRAMEBUFFER_EXT, fb);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,
 GL_TEXTURE_2D, tex_names[0], 0);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
 GL_TEXTURE_2D, tex_names[1], 0);
glFramebufferTexture2D(GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT,
 GL_TEXTURE_2D, tex_names[1], 0);

Same object attached both places

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Shadow Volumes

⇨ Proposed by Frank Crow in 1977
 Add new geometry to the scene that describes the

volume occluded from the light source
 Objects within the volume are in shadow, objects not

within the volume are not
 Sometimes called Crow shadows or Crow shadow

volumes

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Shadow Volumes

⇨ Proposed by Frank Crow in 1977
 Add new geometry to the scene that describes the

volume occluded from the light source
 Objects within the volume are in shadow, objects not

within the volume are not
 Sometimes called Crow shadows or Crow shadow

volumes

⇨ In 1991, Tim Heidmann showed how the stencil
buffer can be used to apply these volumes to a
scene

 This adaptation often called stencil volume shadows

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Shadow Volumes

⇨ Basic algorithm:
1. Render scene using only ambient light

2. For each light in the scene:
a. Using the depth information from the initial pass, construct

a stencil with “holes” where there the light is not occluded.
 Stencil will be 0 where the light is visible

b. Render scene again with normal lighting. Use the stencil
mask to only draw where the light is not occluded.

 Configure stencil test to draw only where stencil = 0

 Two common methods to create this stencil: z-pass
and z-fail

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Shadow Volumes

⇨ Problems?

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Shadow Volumes

⇨ Problems?
 Very fill-rate intensive
 Calculating shadow volumes can be complex and

time consuming
 Difficult to extend to soft-shadows

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Shadow Volumes

⇨ Problems?
 Very fill-rate intensive
 Calculating shadow volumes can be complex and

time consuming
 Difficult to extend to soft-shadows

⇨ Advantages?

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Shadow Volumes

⇨ Problems?
 Very fill-rate intensive
 Calculating shadow volumes can be complex and

time consuming
 Difficult to extend to soft-shadows

⇨ Advantages?
 Since everything is done in geometry-space instead of

image-space, no aliasing artifacts!!!
 No shadow acne either!

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Shadow Volumes – Z-Pass

1. Disable depth and color writes

2. Configure stencil operation:
 GL_INCR_WRAP on depth pass front-faces

 GL_DECR_WRAP on depth pass back-faces

 GL_KEEP for all other cases

3. Draw shadow volumes

⇨ Why use GL_INCR_WRAP and GL_DECR_WRAP
instead of GL_INCR and GL_DECR?

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Shadow Volumes – Z-Pass

1. Disable depth and color writes

2. Configure stencil operation:
 GL_INCR_WRAP on depth pass front-faces

 GL_DECR_WRAP on depth pass back-faces

 GL_KEEP for all other cases

3. Draw shadow volumes

⇨ Why use GL_INCR_WRAP and GL_DECR_WRAP
instead of GL_INCR and GL_DECR?

 Otherwise, if there are more than 2n increments before
a decrement, the count will be wrong

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Shadow Volumes – Z-Pass

-1

+1

Camera

Light+1

+1

-1

-1

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Shadow Volumes – Z-Pass

⇨ Big problem with z-pass: What if the camera is
inside a shadow volume?

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Shadow Volumes – Z-Pass

-1

+1

Camera

Light+1

+1

-1

-1

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Shadow Volumes – Z-Pass

⇨ Big problem with z-pass: What if the camera is
inside a shadow volume?

 The count is too low!

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Shadow Volumes – Z-Pass

⇨ Big problem with z-pass: What if the camera is
inside a shadow volume?

 The count is too low!

⇨ Possible solutions:
 Clear stencil buffer to +1 for each volume the camera

is inside
 Expensive to compute

 Add a “cap” at the near plane for each volume the
camera is inside

 Expensive to compute

 Use z-fail

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Shadow Volumes – Z-Fail

1. Disable depth and color writes

2. Configure stencil operation:
 GL_INCR_WRAP on depth fail back-faces

 GL_DECR_WRAP on depth fail front-faces

 GL_KEEP for all other cases

3. Draw shadow volumes
⇨Method first publicly described by John Carmack

while working on Doom 3
 Often called Camack's reverse

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Shadow Volumes – Z-Fail

1. Disable depth and color writes

2. Configure stencil operation:
 GL_INCR_WRAP on depth fail back-faces

 GL_DECR_WRAP on depth fail front-faces

 GL_KEEP for all other cases

3. Draw shadow volumes

Note that the depth test and the
polygon facing are reversed
compared to z-pass

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Shadow Volumes – Z-Fail

⇨ Big problems with z-fail:
 Since more geometry fails the depth test than passes,

this method can use orders of magnitude more fill rate
 US Patent #6,384,822

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Shadow Volumes

⇨ Shadow volume geometry is made of 3 types of
polygons:

 Front faces of the object (w.r.t. the light)
 Quads from each silhouette edge (w.r.t. the light)

projected to “infinity”
 Back faces of the object (w.r.t. the light) projected to

“infinity”

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Shadow Volumes

⇨ Front and back caps are trivial. What about the
sides?

 Add a degenerate quad at each edge of the model
 Quad stores normals of one polygon with one vertex

pair and normals of the other polygon with the other
vertex pair

 In vertex shader, test vertex normal against light. If
normal points away from light, project to infinity

 For silhouette edges one pair will be projected away and the
other pair will not

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Shadow Volumes

n
0

n
1

v
0

v
1

v0 n0
v1 n0
v1 n1
v0 n1

Vertex data for shadow
volume quad:

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Shadow Volumes

⇨ Advantages?
 Shadow volume geometry is independent of light

position and object orientation
 Very little work done on the CPU per-frame
 Static shadow volume data does not need to be re-

uploaded to GPU every frame

⇨ Disadvantages?
 For static lights and geometry a lot of redundant work

is done every frame
 True shadow volumes only exist on the GPU, so we

can't determine whether the camera is inside a
shadow volume

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

References

http://en.wikipedia.org/wiki/Shadow_volume

http://en.wikipedia.org/wiki/Shadow_volume

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Shadow Volume Geometry

⇨ Generating shadow volume geometry directly
from raw vertex data is hard

 Clearly some data structure is needed to make the
work easier

⇨ What features must this data structure have?

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Shadow Volume Geometry

⇨ Generating shadow volume geometry directly
from raw vertex data is hard

 Clearly some data structure is needed to make the
work easier

⇨ What features must this data structure have?
 Iterate over each edge in the mesh exactly once
 Access to each polygon sharing an edge
 Access to neighboring edges in each polygon

 This is so that normals can be calculated

⇨ Does such a magical data structure exist?

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Winged-Edge Mesh

⇨ The original mesh structure to store connectivity
information

⇨ As the name implies, the focus is the edge
 Each vertex stores a pointer to one of the edges

“radiating” from it
 Each polygon stores a pointer to one of its edges
 Each edge has 8 pointers:

 Pointers to each of its vertices (2)
 Pointers to each of its polygons (2)
 Pointers to each of its connecting edges (4)

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Winged-Edge Mesh

f
0

f
1

e

e
0

+ e
1

-

e
0

- e
1

+

Counter-clockwise edges are +

Clockwise edges are -

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Winged-Edge Mesh

⇨ Desirable mesh representation properties:
 Ease of manipulation: adding and removing data

should not be too expensive
 Scalability: May want to trade data size for

performance per the needs of the application

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Winged-Edge Mesh

⇨ Desirable mesh representation properties:
 Ease of manipulation: adding and removing data

should not be too expensive
 Scalability: May want to trade data size for

performance per the needs of the application

✫ Base winged-edge lacks the
ability to iterate over the
edges

✫ Base winged-edge has a lot
of extra pointers that we will
never use

✫ Several common types of
updates on WE meshes are
really complicated to
implement correctly

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Half-Edge Mesh

⇨ Slight modification of winged-edge mesh:
 Half-edge (HE) structures replace (full) edges
 Each HE stores 4 pointers:

 Pointer to starting vertex (1)
 Pointer to polygon (1)
 Pointer to counter-clockwise neighbor HE on the same

polygon (1)
 The “opposite” HE (1)

 I call this the sibling edge

 Other references call it symmetric edge or pair edge

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Half-Edge Mesh

f
0

f
1

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Half-Edge Mesh

struct half_edge {
 // Pointer to next counterclockwise edge on same
 // polygon
 struct half_edge *next_ccw;

 // Pointer to matching edge on different polygon
 struct half_edge *sibling;

 // Pointer to the owning polygon
 struct polygon *p;

 // Pointer to next edge in global mesh edge list
 struct half_edge *next;

 // Pointer to starting vertex
 struct vertex *v;
};

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Half-Edge Mesh

⇨ If each HE only stores one vertex pointer, how
do we get the other end?

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Half-Edge Mesh

⇨ If each HE only stores one vertex pointer, how
do we get the other end?

 The sibling edge stores a pointer to the other vertex
 e>v and e>sibling>v make up the complete

edge

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Half-Edge Mesh

struct vertex {
 // Pointer an edge leaving this vertex
 struct half_edge *edge;

 // Pointer to position data for this vertex
 GLUvec4 *v;
};

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Half-Edge Mesh

⇨ Given a vertex structure, how can we iterate all
the edges that share that vertex?

half_edge *e = v>edge;
do {
 // Do real work here.

 // Iterate to next edge
 e = e>sibling>next_ccw;
} while (e != v>edge);

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Half-Edge Mesh

f
0

f
1

e

v

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Half-Edge Mesh

f
0

f
1

e>sibling

v

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Half-Edge Mesh

f
0

f
1

e>sibling>next

v

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Half-Edge Mesh

⇨ What's the problem?

f
0

f
1

e

v

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Half-Edge Mesh

⇨ What's the problem?
 The new e doesn't

really have a sibling!
 There are no pointers

to follow to get the next
edge

f
0

f
1

e

v

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Half-Edge Mesh

⇨ How can we add new
edges to the mesh
and prevent this
problem? f

0
f
1

e

v

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Half-Edge Mesh

⇨ How can we add new
edges to the mesh
and prevent this
problem?

 As new polygons are
created, the sibling
edges are linked in a
“fake” CCW ring

 The polygon pointers of
these HEs is NULL

 Adding new edges is a
matter of updating all
the linked lists

f
0

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Half-Edge Mesh

⇨ To make the HE work, there are a few more
primitives required

 create_edge(v0, v1): Create a new pair of HEs
between v0 and v1

 make_adjacent(a, b): Link a and b so that
a>next = b

 add_polygon(edges, n): Create a new polygon
from a list of existing edges

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Half-Edge Mesh

⇨ To create a new edge:
 Allocate two HEs, link one to v0 and the other to v1
 Set both polygon pointers to NULL
 Link both HEs as siblings
 Link both HEs as each others next_ccw

 Tricky! This makes the bootstrap case work and fixes other
issues in make_adjacent

 Insert each edge in the “gap” in the vertex's edge list
 Some HE where:

 e>sibling>v == v

 e>p == NULL

 e>next_ccw>v == v

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Half-Edge Mesh

⇨ Edges can be added in arbitrary order...

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Half-Edge Mesh

⇨ Edges can be added in arbitrary order...

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Half-Edge Mesh

⇨ Edges can be added in arbitrary order...

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Half-Edge Mesh

⇨ Edges can be added in arbitrary order...

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Half-Edge Mesh

⇨ Edges can be added in arbitrary order...

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Half-Edge Mesh

 This causes problems
when edges are formed
into a polygon

⇨ Edges can be added in arbitrary order...

These edges should be linked

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Half-Edge Mesh

 Cut the links between in and
in-next, and between out
and out-previous

⇨ Relink the edges to create the correct
relationships

in

out

out-previous

in-next

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Half-Edge Mesh

 Cut the links between in and
in-next, and between out
and out-previous

 Link in and out

⇨ Relink the edges to create the correct
relationships

in

out

out-previous

in-next

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Half-Edge Mesh

 Cut the links between in and
in-next, and between out
and out-previous

 Link in and out

⇨ Relink the edges to create the correct
relationships

in

out

out-previous

in-next

 Find a free edge going into
in and out's common vertex,
call it g

 This edge must be between out-sibling and in

g

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Half-Edge Mesh

 Cut the links between in and
in-next, and between out
and out-previous

 Link in and out

⇨ Relink the edges to create the correct
relationships

in

out

out-previous

in-next

 Find a free edge going into
in and out's common vertex,
call it g

 This edge must be between out-sibling and in

 Link g to in-next
 Link out-previous to g-next

g

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Half-Edge Mesh

 Cut the links between in and
in-next, and between out
and out-previous

 Link in and out

⇨ Relink the edges to create the correct
relationships

 Find a free edge going into
in and out's common vertex,
call it g

 This edge must be between out-sibling and in

 Link g to in-next
 Link out-previous to g-next

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Half-Edge Mesh

⇨ With these primitives, adding a new polygon is
easy

 For all edges, verify that the end point of one edge
and the start point of the next edge is the same

 For all edges, verify that the edge is not already
associated with a polygon

 For all edges, connect the edge to the next edge in
the list

 Allocate a new polygon object and connect all of the
edges to it

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

References

Matt Pharr and Ken Schoemake, ed. comp.graphics.algorithims
FAQ. Accessed 13 May 2008; available from
http://cgafaq.info/wiki/Geometric_data_structures; Internet.

http://cgafaq.info/wiki/Geometric_data_structures

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Shadow Volume Geometry

⇨ Once we have a model stored half-edge or
winged-edge data structure, how do we generate
the shadow volume geometry?

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Shadow Volume Geometry

⇨ Once we have a model stored half-edge or
winged-edge data structure, how do we generate
the shadow volume geometry?

 For each edge in the mesh:
 If the either of the edge's polygon pointers is NULL, skip the

edge
 Calculate the normal of each polygon sharing the edge, call

these n
0
 and n

1

 If n
0
 and n

1
 are equal, skip the edge

 This happens if the surfaces are co-planar, and can never be on the
silhouette

 Emit a quad of (v
0
, n

0
), (v

1
, n

0
), (v

1
, n

1
), (v

0
, n

1
)

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Fixing Object Geometry

⇨ What about edges with NULL polygon pointers?

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Fixing Object Geometry

⇨ What about edges with NULL polygon pointers?
 These represent holes in the model

 The Stanford bunny model has several holes in the bottom

 For each hole, the hole-edges form a ring

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Fixing Object Geometry

⇨ What about edges with NULL polygon pointers?
 These represent holes in the model

 The Stanford bunny model has several holes in the bottom

 For each hole, the hole-edges form a ring

⇨ What can we do with this?

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Fixing Object Geometry

⇨ What about edges with NULL polygon pointers?
 These represent holes in the model

 The Stanford bunny model has several holes in the bottom

 For each hole, the hole-edges form a ring

⇨ What can we do with this?
 Walk the hole-edge ring and insert new edges

between each pair of hole-edges
 Each new edge will form a triangle that fills part of the

hole
 Do this step before generating shadow volume

geometry

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Next week...

⇨ Advanced shadow volume techniques:
 Fixing z-pass and z-fail with ZP+
 Soft shadows using shadow volumes
 Hardware based optimizations:

 Depth clamping
 Depth bounds testing

© Copyright Ian D. Romanick 2009, 2011 9-February-2011

Legal Statement

This work represents the view of the authors and does not necessarily
represent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 United States License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San
Francisco, California, 94105, USA.

http://creativecommons.org/licenses/by-nc-sa/3.0/us/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90

