
© Copyright Ian D. Romanick 2009, 2011 12-January-2011

VGP353 – Week 1

⇨ Agenda:
­ Course road-map
­ Introduce shadows

­ Importance of shadows
­ Planar projected shadows
­ Soft shadows
­ Shadow textures

­ Projective texturing review
­ First programming assignment

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

What should you already know?

⇨ All of the prerequisites of VGP351 & VGP352:
­ C++ and object-oriented programming

­ Basic graphics terminology and concepts

­ Some knowledge of linear algebra and vector math

­ Using OpenGL extensions

­ OpenGL Shading Language

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

What will you learn?

⇨ Algorithms and supporting data-structures for
implementing shadows

­ Planar projected shadows

­ Shadow textures

­ Shadow maps

­ Shadow volumes

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

How will you be graded?

⇨ Four bi-weekly quizzes
­ These are listed on the syllabus

⇨ One final exam
⇨ Three-ish programming projects

­ The first will be pretty small...perhaps small enough to
complete in class

­ The remaining two projects will be larger
⇨ One in-class presentation

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

How will programs be graded?

⇨ Does the program produce the correct output?
⇨ Are appropriate algorithms and data-structures

used?
⇨ Is the code readable, clear, and properly

documented?

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

How will the presentation be graded?

⇨ During the term, several papers will be assigned
to be read

­ Select and present one of the assigned readings to
the class

­ Material from some papers may appear on bi-weekly
quizzes

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Class Web Site

⇨ Syllabus, assignments, and base code:
http://people.freedesktop.org/~idr/2011Q1-VGP353/

http://people.freedesktop.org/~idr/2011Q1-VGP353/

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Shadow Terms

Original image from
http://commons.wikimedia.org/wiki/File:Diagram_of_umbra,_penumbra_%26_antumbra.png

http://commons.wikimedia.org/wiki/File:Diagram_of_umbra,_penumbra_&_antumbra.png

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Shadow Terms

⇨ “Hard shadows” occur when there is no
perceptible penumbra

­ Projected size of the light from the shadow caster
determines the size of the penumbra and antumbra

­ Smaller projection → smaller penumbra
­ Larger projection → larger penumbra
­ We're really talking about the solid angle of the light from the

caster

­ Perfectly hard shadows are only cast by infinitesimal
light sources

­ A super bright LED in a dark room
­ A light very far away from the shadow caster relative to the

size of the light source

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Shadows

⇨ Why are shadows important to 3D rendering?

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Shadows

⇨ Why are shadows important to 3D rendering?
­ Provide additional information about shadow casters

­ Relative position of casters
­ Relative position of casters and receivers

­ Provide additional information about shadow receivers
­ Show additional surface detail

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Planar Projected Shadows

⇨ Simplest shadow algorithm: project object
geometry directly onto a flat plane

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Planar Projected Shadows

⇨ Simplest shadow algorithm: project object
geometry directly onto a flat plane

­ As the description implies, this is accomplished using
a projection matrix

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Planar Projected Shadows

⇨ Given a point on a plane, p, and the normal of
that plane, n, the plane equation is:

­ Every p
i
 where this equation is 0, is “on” the plane

d=−n⋅p

n⋅p
i
d=0

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Planar Projected Shadows

⇨ Given a plane, defined by n and d, and a
projection point, L, create a matrix that projects
an arbitrary point onto that plane:

­ This matrix is similar to the matrix used to project onto
the view plane from the eye point

M p=[
n⋅Ld−L x nx −L x ny −L x nz −L x d

−L y nx n⋅Ld−L y ny −L y nz −L y d
−L z nx −L z ny n⋅Ld−L z n z −L z d
−nx −ny −nz n⋅L]

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Planar Projected Shadows

⇨ If n and d define the ground plane and L is the
position of the light, M

p
 will project world-space

geometry onto the ground plane

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Planar Projected Shadows

⇨ If n and d define the ground plane and L is the
position of the light, M

p
 will project world-space

geometry onto the ground plane

⇨ Question: Where do we insert M
p
 in the

sequence of transformation matrices?

M=M view Mmodel

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Planar Projected Shadows

⇨ If n and d define the ground plane and L is the
position of the light, M

p
 will project world-space

geometry onto the ground plane

⇨ Question: Where do we insert M
p
 in the

sequence of transformation matrices?
­ Answer: After the object-to-world space

transformations, but before the world-to-eye space
transformation

M=M view M p Mmodel

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Planar Projected Shadows

⇨ Can be drawn several different ways

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Planar Projected Shadows

⇨ Can be drawn several different ways
­ Disable depth buffer writes

glDepthMask(GL_FALSE);

­ Draw shadow to alpha component
glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_TRUE);

­ Re-enable depth buffer writes
glDepthMask(GL_TRUE);

­ Draw object normally
­ Draw ground plane and modulate with destination

alpha
glEnable(GL_BLEND);
glBlendFunc(GL_ONE_MINUS_DST_ALPHA, GL_ONE);

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Hard Shadows vs. Soft Shadows

⇨ Hard shadows are better than nothing, but still
not very realistic

­ Can this technique be extended to create soft
shadows?

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Heckbert and Herf's Method

⇨ Simulate an area light with many point lights on
the area light's surface

­ If lots of sample points are used, this method
produces very good results

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Heckbert and Herf's Method

⇨ Simulate an area light with many point lights on
the area light's surface

­ If lots of sample points are used, this method
produces very good results

­ If lots of sample points are used, this method
produces very slow results

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Heckbert and Herf's Method

⇨ Simulate an area light with many point lights on
the area light's surface

­ If lots of sample points are used, this method
produces very good results

­ If lots of sample points are used, this method
produces very slow results

­ Some optimizations are possible:
­ Scale number of samples with size of light
­ Scale number of samples with distance between light and

shadow caster

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Gooch's Method

⇨ By moving the receiving plane towards and away
from the light, the penumbra can be simulated

­ Project on to a biased receiver plane
­ Translate the biased projection to the true receiver

plane
­ The simulated penumbra is always too big

penumbra

penumbra

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

References

Gooch, B., Sloan, P. J., Gooch, A., Shirley, P., and Riesenfeld, R. 1999.
Interactive technical illustration. In Proceedings of the 1999 Symposium on
Interactive 3D Graphics (Atlanta, Georgia, United States, April 26 - 29, 1999).
I3D '99. ACM, New York, NY, 31-38. http://www.cs.utah.edu/~bgooch/ITI/

Paul Heckbert and Michael Herf, Simulating Soft Shadows with Graphics
Hardware. CMU-CS-97-104, CS Dept, Carnegie Mellon U., Jan. 1997.
http://www.stereopsis.com/shadow/

http://www.cs.utah.edu/~bgooch/ITI/
http://www.stereopsis.com/shadow/

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Planar Projected Shadows

⇨ Disadvantages:

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Planar Projected Shadows

⇨ Disadvantages:
­ No self-shadowing
­ Can only cast shadows on the ground plane
­ Can only cast shadows on a flat ground plane

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Planar Projected Shadows

⇨ Disadvantages:
­ No self-shadowing
­ Can only cast shadows on the ground plane
­ Can only cast shadows on a flat ground plane

⇨ Advantages:
­ Easy to implement
­ Low memory usage

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Shadow Textures

⇨ Algorithm outline:
­ Render shadow caster to a texture from the point of

view of the light
­ Texture background is the color of the light
­ Object is rendered in black

­ Using projective texturing cast the shadow texture
onto each shadow receiver

­ Use the sampled texture color as the light color

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Shadow Textures

⇨ Advantages?

Original image from Battlefield 1942 © Copyright Digital Illusions CE 2002.

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Shadow Textures

⇨ Advantages?
­ Can cast shadows on non-flat surfaces
­ Can cast shadows on multiple objects

Original image from Battlefield 1942 © Copyright Digital Illusions CE 2002.

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Shadow Textures

⇨ Advantages?
­ Can cast shadows on non-flat surfaces
­ Can cast shadows on multiple objects

⇨ Disadvantages?

Original image from Battlefield 1942 © Copyright Digital Illusions CE 2002.

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Shadow Textures

⇨ Advantages?
­ Can cast shadows on non-flat surfaces
­ Can cast shadows on multiple objects

⇨ Disadvantages?
­ No self-shadowing

­ Shadow maps will solve this problem...next week

­ Render-to-texture pass for each caster and each light
­ Receivers must sample multiple shadow textures
­ More memory usage

Original image from Battlefield 1942 © Copyright Digital Illusions CE 2002.

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Shadow Textures

Original images from Torchlight © Copyright Runic Games, Inc. 2009.

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Shadow Texture Creation

⇨ Setup model-view-projection matrix to render
from the light looking at the object

­ The light position becomes the eye-point
­ Set the FoV to just enclose the object

­ The object's bounding box is helpful here

⇨ Render object as shadow
­ Clear the color buffer to the light's color
­ Render the object as solid black

­ Can “fake” soft shadows by using distance from light (eye) to
determine color: closer to the light is darker, farther is lighter

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Determining Receiver / Caster

⇨ For each shadow texture, determine which
objects are potential receivers

­ If the object is completely on the opposite side of the
near plane from the light, it is a candidate

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Projective Texturing

⇨ Does what it says: projects a texture onto an
object

⇨ This is a perspective projection, so what is
needed to make it “work”?

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Projective Texturing

⇨ Does what it says: projects a texture onto an
object

⇨ This is a perspective projection, so what is
needed to make it “work”?

­ Divide by Z...just like perspective viewing projections
­ Uses the q texture coordinate

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Projective Texturing

⇨ Algorithm outline:
­ Use object-space vertex positions as initial texture

coordinates
­ Transform object-space texture coordinate to

projector-space
­ Apply perspective transformation

­ Same MVP matrix as is used to render to the texture

­ Scale and bias coordinates from [-1, 1] to [0, 1]
­ Unless one of the mirroring wrap modes is being used

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Projective Texturing

⇨ Uses different sampling functions in GLSL:
­ texture[123]DProj vs texture[123]D
­ Use these functions instead of doing the perspective

divide by hand
­ Cubic textures are not supported. Why?

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Projective Texturing

⇨ Uses different sampling functions in GLSL:
­ texture[123]DProj vs texture[123]D
­ Use these functions instead of doing the perspective

divide by hand
­ Cubic textures are not supported. Why?

­ The q component is already used as part of the texture
lookup!

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Projective Texturing

⇨ What happens if the point is behind the
projection point?
Hint: What happens if an object is behind the eye?

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Projective Texturing

⇨ What happens if the point is behind the
projection point?
Hint: What happens if an object is behind the eye?

­ It gets a negative Z (or q) value
­ The projection then “flips” the position

­ Because it divides by a negative number

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Optimizations

⇨ Performance problems with shadow textures:
­ Lots of textures need to be generated per frame
­ Shadow receivers need to read lots of textures

⇨ General speed-up techniques:
­ Regenerate a texture only if light or caster moved
­ Generate textures for shadows that might intersect

view volume
­ Apply texture only to objects that might be shadowed
­ Composite multiple shadow textures together

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Optimizations

⇨ Generate textures for shadows that might
intersect view volume

­ Each shadow texture has an associated frustum
­ “View” frustum used to render the shadow texture

­ If the shadow's frustum intersects the view (eye)
frustum, then it might be visible

Do not generate
Generate

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Optimizations

⇨ Apply texture only to objects that might be
shadowed

­ Any object that does not intersect the shadow's
frustum is not a receiver

Apply

Don't apply

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Optimizations

⇨ Composite multiple shadow textures together
­ Many casters can affect all members of a group of

receivers
­ Create a new shadow texture by compositing all

potential casters shadow textures together
­ Project each shadow texture onto the near-plane

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

References

Bloom, Charles. Projective Shadow Mapping [article on-line]. June 30,
2000, accessed April 4, 2008; available from
http://www.cbloom.com/3d/techdocs/shadowmap.txt; Internet.

Bloom, Charles, and Teschner, Phil. Advanced Techniques in Shadow
Mapping [article on-line]. June 3, 2001, accessed April 4, 2008;
available from
http://www.cbloom.com/3d/techdocs/shadowmap_advanced.txt;
Internet.

http://www.cbloom.com/3d/techdocs/shadowmap.txt
http://www.cbloom.com/3d/techdocs/shadowmap_advanced.txt

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Next week...

⇨ Shadow maps, part 1
­ Read:

Eric Haines, "Soft Planar Shadows Using Plateaus." journal of graphics
tools , vol. 6 , no. 1 , pages 19-27. 2001.
http://erich.realtimerendering.com/plateaus.pdf

Everitt, Cass; Rege, Ashu; and Cebnoyan, Cem, Hardware Shadow
Mapping. NVIDIA. Decemeber 2001.
http://developer.nvidia.com/object/hwshadowmap_paper.html

­ Start assignment #1... due next week

http://erich.realtimerendering.com/plateaus.pdf
http://developer.nvidia.com/object/hwshadowmap_paper.html

© Copyright Ian D. Romanick 2009, 2011 12-January-2011

Legal Statement

This work represents the view of the authors and does not necessarily
represent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

This work is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 United States License. To view a copy of
this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or
send a letter to Creative Commons, 171 Second Street, Suite 300, San
Francisco, California, 94105, USA.

http://creativecommons.org/licenses/by-nc-sa/3.0/us/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

