
© Copyright Ian D. Romanick 2009, 2010

8-December-2010

VGP352 – Week 10

⇨ Agenda:
 Multiple render targets
 Deferred shading
 Discuss the final

© Copyright Ian D. Romanick 2009, 2010

8-December-2010

MRT

⇨ Multiple color outputs from the fragment shader
 For practical purposes, requires the use of

framebuffer objects
 Slightly changes GLSL syntax

© Copyright Ian D. Romanick 2009, 2010

8-December-2010

MRT

Fragment
Shader

Varying 0

Uniforms Textures

Fragment ColorsVarying 1

Varying m Fragment Depth

Window Pos.

Point Coordinate

Facing

© Copyright Ian D. Romanick 2009, 2010

8-December-2010

Framebuffer Objects

⇨ Attach one or more renderable objects to it
 1D, 2D, and 3D versions exist

void glFramebufferTexture2DEXT (GLenum target,
 GLenum attachment, GLenum textarget,
 GLuint texture, GLint level);

void glFramebufferRenderbufferEXT(
 GLenum target, GLenum attachment,
 GLenum renderbuffertarget,
 GLuint renderbuffer);

Selects how the buffer is used:

 Color buffer: GL_COLOR_ATTACHMENT0

 Depth buffer: GL_DEPTH_ATTACHMENT

 Stencil buffer: GL_STENCIL_ATTACHMENT

© Copyright Ian D. Romanick 2009, 2010

8-December-2010

MRT – FBO Usage

⇨ Use additional color attachments
 e.g. GL_COLOR_ATTACHMENT1
 Maximum number of attachments queryable with

GL_MAX_COLOR_ATTACHMENTS
 EXT_fbo requires that all color attachments have the

same internal format
 ARB_fbo / OpenGL 3.0 allow drivers to relax this restriction
 The driver can still reject a particular combination
 Most hardware can handle combinations with the same size

internal formats
 e.g. GL_RGBA8 with GL_RGBA_10_10_10_2

© Copyright Ian D. Romanick 2009, 2010

8-December-2010

MRT – Setting Draw Buffers

⇨ Connect attachments with shader outputs:
void glDrawBuffers(GLsizei n,
 const GLenum *bufs);

 bufs gives a list of attachments points to connect, in
the specified order, with shader outputs

 Shader output 0 gets the first listed attachment, output 1 gets
the second, etc.

 Maximum number of outputs queryable with
GL_MAX_DRAW_BUFFERS

© Copyright Ian D. Romanick 2009, 2010

8-December-2010

MRT – GLSL Usage

⇨ gl_FragColor is but one output. What to do?
 Replace with a new output that is declared as an

array:

vec4 gl_FragData[];
 Each element in gl_FragData corresponds to one of

the outputs set by glDrawBuffers

© Copyright Ian D. Romanick 2009, 2010

8-December-2010

References

Jones, Rob. “OpenGL Frame Buffer Object 201.” GameDev.net.
December 14th, 2006. Accessed on June 10th, 2009.
http://www.gamedev.net/reference/articles/article2333.asp

http://www.gamedev.net/reference/articles/article2333.asp

© Copyright Ian D. Romanick 2009, 2010

8-December-2010

Deferred Shading

⇨ Scenes with high depth complexity or many
lights suffer from several problems:

 Many passes to implement the lights
 Lots of wasted fragment processing
 Difficulty with per-batch storage for shadow maps
 Difficulty with stencil shadows from multiple lights
 etc.
 End result: poor performance

© Copyright Ian D. Romanick 2009, 2010

8-December-2010

Deferred Shading

⇨ What if we could easily:
 Light each pixel (not fragment) exactly once
 Only apply lights to the fragments they affect
 Reduce per-light cost in scenes with many lights

© Copyright Ian D. Romanick 2009, 2010

8-December-2010

Deferred Shading

⇨ General idea:
 Render scene information needed for shading to an

off-screen geometry buffer (G-buffer)
 Draw per-light geometry to screen sampling from G-

buffer to calculate shading

© Copyright Ian D. Romanick 2009, 2010

8-December-2010

Deferred Shading – G-Buffer

⇨ All per-fragment data required for shading:
 Normal
 Position
 Diffuse / specular color
 etc.

⇨ Emit this during per-object rendering
 Output this data instead of performing lighting

calculations
 Use MRT!

© Copyright Ian D. Romanick 2009, 2010

8-December-2010

Deferred Shading – G-Buffer

⇨ Example G-buffer layout:
 2 RGBA16F outputs:

 m is the Cook-Torrance roughness
 n is the index of refraction

Diffuse (red) Diffuse (green) Diffuse (blue) m

Normal (X) Normal (Y) Normal (Z) n

© Copyright Ian D. Romanick 2009, 2010

8-December-2010

Deferred Shading – G-Buffer

⇨ Tough choices:
 Explicitly store position or derive from screen X/Y and

depth value?
 Explicitly store the normals Z or derive from its X and

Y?
 One of the most important parts of designing a

deferred shading engine is selecting the parameters
and the packing

© Copyright Ian D. Romanick 2009, 2010

8-December-2010

Deferred Shading – G-Buffer

⇨ CryEngine 3 stores normals in 2 components
 Encode:

 normal_g = normalize(normal.xy) *
 sqrt((normal.z / 2.0) + 0.5);

 Decode:
 normal.z = (length(normal_g.xy) * 2.0) – 1.0;
 normal.xy = normalize(normal_g.xy) *
 sqrt(1.0 (normal.z * normal.z);

 Very similar to the mapping for spherical reflection
maps

 More expensive to compute, but has better precision

© Copyright Ian D. Romanick 2009, 2010

8-December-2010

Deferred Shading – Lighting

⇨ For each light, draw simplified bounding
geometry

 Perform lighting for each fragment drawn
 Only light the areas of the scene that need lighting
 Read from G-buffer at the screen X/Y position
 Add calculated lighting to existing values

 Examples:
 Directional light: box
 Point light: sphere
 Spot light: cone

© Copyright Ian D. Romanick 2009, 2010

8-December-2010

Deferred Shading – Lighting

⇨ Optimize by letting the early stencil test discard
many fragments

 Draw the light volume once:
 Disable color writes

 Set depth function to GL_LESS and stencil function to
GL_ALWAYS

 Set Z-fail stencil operation to GL_REPLACE and all others to
GL_KEEP

 Draw the light volume again:
 Enable color writes

 Set depth function to GL_LEQUAL and stencil function to
GL_EQUAL

 Set all stencil operations GL_KEEP

© Copyright Ian D. Romanick 2009, 2010

8-December-2010

Deferred Shading – Lighting

Light volume

© Copyright Ian D. Romanick 2009, 2010

8-December-2010

Deferred Shading – Lighting

Light volume

© Copyright Ian D. Romanick 2009, 2010

8-December-2010

Deferred Shading – Lighting

Light volume

Z fails
on first
pass

Z passes
on second
pass

© Copyright Ian D. Romanick 2009, 2010

8-December-2010

Deferred Shading – Drawbacks

⇨ What could go wrong?

© Copyright Ian D. Romanick 2009, 2010

8-December-2010

Deferred Shading – Drawbacks

⇨ What could go wrong?
 Transparency effects won't work
 Traditional anti-aliasing (multisampling) has problems

© Copyright Ian D. Romanick 2009, 2010

8-December-2010

References

Hargreaves, S., Harris, M. “Deferred Shading.” Nvidia 6800 Leagues
Under the Sea. June 2004.
http://developer.nvidia.com/object/6800_leagues_deferred_shading.html

Fabio Policarpo, Francisco Fonseca, Deferred shading tutorial.
Pontifical Catholic University of Rio de Janeiro. 2005.
http://www710.univ-lyon1.fr/~jciehl/Public/educ/GAMA/2007/Deferred_Shading_Tutorial_SBGAMES2005.pdf

Shishkovtsov, Oles. "Deferred Shading in S.T.A.L.K.E.R." in
Fernando, Randima (editor) GPU Gems 2, Addison Wesley,
2005.
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter09.html

Mittring, M. “A bit more deferred – CryEngine3.” Triangle Game
Conference 2009. http://www.crytek.com/technology/presentations/

http://developer.nvidia.com/object/6800_leagues_deferred_shading.html
http://www710.univ-lyon1.fr/~jciehl/Public/educ/GAMA/2007/Deferred_Shading_Tutorial_SBGAMES2005.pdf
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter09.html
http://www.crytek.com/technology/presentations/

© Copyright Ian D. Romanick 2009, 2010

8-December-2010

Global Illumination

⇨ Can deferred shading be used to implement
global illumination?

 Yes, but...
 Only for a single “bounce”
 Only for diffuse inter-reflections

⇨ Deferred shading makes using many lights very
cheap

 Where many can mean 100's
 Generate a bunch of fake lights that represent the

reflection of light from surfaces
 Call these virtual point lights (VPLs)

© Copyright Ian D. Romanick 2009, 2010

8-December-2010

Virtual Point Lights

⇨ Generate VPLs:
 Trace paths from each light to first intersection

 This determines the position of the VPL
 Treat all VPLs as 180˚ spot lights

 Calculate reflection at intersection
 This determines the intensity of the VPL

© Copyright Ian D. Romanick 2009, 2010

8-December-2010

References

Samuli Laine, Hannu Saransaari, Janne Kontkanen, Jaakko
Lehtinen, and Timo Aila. “Incremental Instant Radiosity for Real-
Time Indirect Illumination.” Eurographics Symposium on
Rendering 2007. http://www.tml.tkk.fi/~timo/

http://www.tml.tkk.fi/~timo/

© Copyright Ian D. Romanick 2009, 2010

8-December-2010

Next week...

⇨ The final

© Copyright Ian D. Romanick 2009, 2010

8-December-2010

Legal Statement

This work represents the view of the authors and does not necessarily
represent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

