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VGP352 – Week 10

⇨ Agenda:
 Multiple render targets
 Deferred shading
 Discuss the final
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MRT

⇨ Multiple color outputs from the fragment shader
 For practical purposes, requires the use of 

framebuffer objects
 Slightly changes GLSL syntax
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MRT
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Framebuffer Objects

⇨ Attach one or more renderable objects to it
 1D, 2D, and 3D versions exist

void glFramebufferTexture2DEXT (GLenum target,
    GLenum attachment, GLenum textarget,
    GLuint texture, GLint level);

void glFramebufferRenderbufferEXT(
    GLenum target, GLenum attachment,
    GLenum renderbuffertarget,
    GLuint renderbuffer);

Selects how the buffer is used:

 Color buffer: GL_COLOR_ATTACHMENT0

 Depth buffer: GL_DEPTH_ATTACHMENT

 Stencil buffer: GL_STENCIL_ATTACHMENT
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MRT – FBO Usage

⇨ Use additional color attachments
 e.g. GL_COLOR_ATTACHMENT1
 Maximum number of attachments queryable with 

GL_MAX_COLOR_ATTACHMENTS
 EXT_fbo requires that all color attachments have the 

same internal format
 ARB_fbo / OpenGL 3.0 allow drivers to relax this restriction
 The driver can still reject a particular combination
 Most hardware can handle combinations with the same size 

internal formats
 e.g. GL_RGBA8 with GL_RGBA_10_10_10_2
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MRT – Setting Draw Buffers

⇨ Connect attachments with shader outputs:
void glDrawBuffers(GLsizei n,
    const GLenum *bufs);

 bufs gives a list of attachments points to connect, in 
the specified order, with shader outputs

 Shader output 0 gets the first listed attachment, output 1 gets 
the second, etc.

 Maximum number of outputs queryable with 
GL_MAX_DRAW_BUFFERS
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MRT – GLSL Usage

⇨ gl_FragColor is but one output.  What to do?
 Replace with a new output that is declared as an 

array:

vec4 gl_FragData[];
 Each element in gl_FragData corresponds to one of 

the outputs set by glDrawBuffers
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Deferred Shading

⇨ Scenes with high depth complexity or many 
lights suffer from several problems:

 Many passes to implement the lights
 Lots of wasted fragment processing
 Difficulty with per-batch storage for shadow maps
 Difficulty with stencil shadows from multiple lights
 etc.
 End result: poor performance
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Deferred Shading

⇨ What if we could easily:
 Light each pixel (not fragment) exactly once
 Only apply lights to the fragments they affect
 Reduce per-light cost in scenes with many lights
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Deferred Shading

⇨ General idea:
 Render scene information needed for shading to an 

off-screen geometry buffer (G-buffer)
 Draw per-light geometry to screen sampling from G-

buffer to calculate shading
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Deferred Shading – G-Buffer

⇨ All per-fragment data required for shading:
 Normal
 Position
 Diffuse / specular color
 etc.

⇨ Emit this during per-object rendering
 Output this data instead of performing lighting 

calculations
 Use MRT!
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Deferred Shading – G-Buffer

⇨ Example G-buffer layout:
 2 RGBA16F outputs:

 m is the Cook-Torrance roughness
 n is the index of refraction

Diffuse (red) Diffuse (green) Diffuse (blue) m

Normal (X) Normal (Y) Normal (Z) n
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Deferred Shading – G-Buffer

⇨ Tough choices:
 Explicitly store position or derive from screen X/Y and 

depth value?
 Explicitly store the normals Z or derive from its X and 

Y?
 One of the most important parts of designing a 

deferred shading engine is selecting the parameters 
and the packing
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Deferred Shading – G-Buffer

⇨ CryEngine 3 stores normals in 2 components
 Encode:

    normal_g = normalize(normal.xy) *
        sqrt((normal.z / 2.0) + 0.5);

 Decode:
    normal.z  = (length(normal_g.xy) * 2.0) – 1.0;
    normal.xy = normalize(normal_g.xy) *
        sqrt(1.0  (normal.z * normal.z);

 Very similar to the mapping for spherical reflection 
maps

 More expensive to compute, but has better precision
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Deferred Shading – Lighting

⇨ For each light, draw simplified bounding 
geometry

 Perform lighting for each fragment drawn
 Only light the areas of the scene that need lighting
 Read from G-buffer at the screen X/Y position
 Add calculated lighting to existing values

 Examples:
 Directional light: box
 Point light: sphere
 Spot light: cone
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Deferred Shading – Lighting

⇨ Optimize by letting the early stencil test discard 
many fragments

 Draw the light volume once:
 Disable color writes

 Set depth function to GL_LESS and stencil function to 
GL_ALWAYS

 Set Z-fail stencil operation to GL_REPLACE and all others to 
GL_KEEP

 Draw the light volume again:
 Enable color writes

 Set depth function to GL_LEQUAL and stencil function to 
GL_EQUAL

 Set all stencil operations GL_KEEP



© Copyright Ian D. Romanick 2009, 2010

8-December-2010

Deferred Shading – Lighting

Light volume
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Deferred Shading – Lighting

Light volume
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Deferred Shading – Lighting

Light volume

Z fails 
on first 
pass

Z passes 
on second 
pass
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Deferred Shading – Drawbacks

⇨ What could go wrong?
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Deferred Shading – Drawbacks

⇨ What could go wrong?
 Transparency effects won't work
 Traditional anti-aliasing (multisampling) has problems
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Global Illumination

⇨ Can deferred shading be used to implement 
global illumination?

 Yes, but...
 Only for a single “bounce”
 Only for diffuse inter-reflections

⇨ Deferred shading makes using many lights very 
cheap

 Where many can mean 100's
 Generate a bunch of fake lights that represent the 

reflection of light from surfaces
 Call these virtual point lights (VPLs)
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Virtual Point Lights

⇨ Generate VPLs:
 Trace paths from each light to first intersection

 This determines the position of the VPL
 Treat all VPLs as 180˚ spot lights

 Calculate reflection at intersection
 This determines the intensity of the VPL
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Next week...

⇨ The final
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Legal Statement

This work represents the view of the authors and does not necessarily 
represent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other 
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service 
marks of others.
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