
© Copyright Ian D. Romanick 2009, 2010

1-December-2010

VGP352 – Week 9

⇨ Agenda:
 Quiz #4
 Interior mapping
 Parallax textures
 Displacement mapping

© Copyright Ian D. Romanick 2009, 2010

1-December-2010

Interior Mapping

⇨ Remember the excellent “debris” demo by
Farbrausch?

© Copyright Ian D. Romanick 2009, 2010

1-December-2010

Interior Mapping

⇨ Remember the excellent “debris” demo by
Farbrausch?

 Isn't it odd that you can't see inside the windows?

© Copyright Ian D. Romanick 2009, 2010

1-December-2010

Interior Mapping

⇨ Determine the location inside the building that is
visible without adding geometry

v

© Copyright Ian D. Romanick 2009, 2010

1-December-2010

Interior Mapping

⇨ Determine the location inside the building that is
visible without adding geometry

 The drawing suggests the answer: use raycasting
 Create virtual walls, ceilings, and floors inside the

building at regular intervals

v

© Copyright Ian D. Romanick 2009, 2010

1-December-2010

Interior Mapping

⇨ Calculate the point of ceiling intersection
 Assume all calculations are in object space
 Exterior intersection point and ray direction are given

iy=⌈ey /h ⌉×h

v

e

i

© Copyright Ian D. Romanick 2009, 2010

1-December-2010

Interior Mapping

⇨ Parametric equation of V:

 Calculate the value of t where p
y
 = i

y

 Use t to calculate the rest of i

p=vv t
where v=e−v

iy = vy vy t
iy−vy = vy t
iy−vy

vy

= t

© Copyright Ian D. Romanick 2009, 2010

1-December-2010

Interior Mapping

⇨ Perform similar calculations for walls
 The intersection with the smallest t is used

 Use resulting i
xy

 to generate a texture coordinate

⇨ Can add extra fake walls to represent items in
the rooms

 Textures for the fake walls should be mostly
transparent

 Has issues if the viewer can see in corners
 See paper for more details

© Copyright Ian D. Romanick 2009, 2010

1-December-2010

References

van Dongen, Joost, "Interior Mapping - A new technique for
rendering realistic buildings." In Computer Graphics International
Conference (CGI). 2008. http://interiormapping.oogst3d.net

http://interiormapping.oogst3d.net/

© Copyright Ian D. Romanick 2009, 2010

1-December-2010

Parallax Textures

⇨ Normal / bump maps give shading cues to
surface shape

 No changes to silhouette
 No self occlusion

© Copyright Ian D. Romanick 2009, 2010

1-December-2010

Parallax Textures

⇨ Normal / bump maps give shading cues to
surface shape

 No changes to silhouette
 No self occlusion

⇨ Parallax textures address the second problem
 Does so by exploiting the parallax effect

© Copyright Ian D. Romanick 2009, 2010

1-December-2010

Parallax Textures

⇨ From wikipedia:
Parallax is an apparent displacement or difference of
orientation of an object viewed along two different
lines of sight, and is measured by the angle or semi-
angle of inclination between those two lines....Nearby
objects have a larger parallax than more distant
objects when observed from different positions, so
parallax can be used to determine distances.

 2D side-scrolling games use this effect all the time
 Nearer background objects scroll by faster than farther

background objects

© Copyright Ian D. Romanick 2009, 2010

1-December-2010

Parallax Textures

⇨ Implement this for a 3D surface:
 Use a height (bump) map to set per-fragment

distance from viewer
 As the viewer moves side-to-side in surface space,

nearer portions of the texture will “scroll by faster”
v

© Copyright Ian D. Romanick 2009, 2010

1-December-2010

Parallax Textures

⇨ At each fragment:
 Sample the depth from the surface using the bump

map
 Use this value to scale projection of the view vector

on to the surface
 Use result as offset into diffuse map

v

© Copyright Ian D. Romanick 2009, 2010

1-December-2010

Parallax Textures

⇨ What could go wrong? What are the short
comings?

© Copyright Ian D. Romanick 2009, 2010

1-December-2010

Parallax Textures

⇨ What could go wrong? What are the short
comings?

 Assumes a smoothly varying height field
 Can't handle large displacements
 Can't handle high-frequency data

 Doesn't properly handle occlusion

© Copyright Ian D. Romanick 2009, 2010

1-December-2010

References

Kaneko, Tomomichi, Toshiyuki Takahei, Masahiko Inami, Naoki
Kawakami, Yasuyuki Yanagida, Taro Maeda, and Susumu Tachi.
2001. “Detailed Shape Representation with Parallax Mapping.” In
Proceedings of the ICAT 2001 (The 11th International
Conferences on Artificial Reality and Telexistence), Tokyo,
December 2001, pp. 205 – 208.
http://vrsj.t.u-tokyo.ac.jp/ic-at/ICAT2003/papers/01205.pdf

West, Mick. “Parallax Mapped Bullet Holes.” Game Developer, May
2006.
http://cowboyprogramming.com/2007/01/05/parallax-mapped-bullet-holes/

http://vrsj.t.u-tokyo.ac.jp/ic-at/ICAT2003/papers/01205.pdf
http://cowboyprogramming.com/2007/01/05/parallax-mapped-bullet-holes/

© Copyright Ian D. Romanick 2009, 2010

1-December-2010

Displacement Mapping

⇨ We really want to raytrace into arbitrary volume
data representing our surface

 Would require a linear search through a volume
texture per fragment

v

© Copyright Ian D. Romanick 2009, 2010

1-December-2010

Displacement Mapping

⇨ What if we knew, at every position, the distance
to the nearest voxel?

 As we walk the ray through voxel space, we could
step by the distance to the nearest voxel

 Reduces the search from n to log n

© Copyright Ian D. Romanick 2009, 2010

1-December-2010

Displacement Mapping

⇨ Algorithm:
For some number of steps:

distance = sample distance texture at
position

position += distance * direction

 Dynamic branching hardware can end loop early if
distance is below some preset threshold

 direction is the normalized viewing direction vector
 Must be rescaled from surface space to texel space

© Copyright Ian D. Romanick 2009, 2010

1-December-2010

Displacement Mapping

⇨ Result of raytracing is a 3D position
 Project the 3D position onto the surface

 i.e., just use the x and y components

 Use the resulting projection to sample texture and
normal maps

© Copyright Ian D. Romanick 2009, 2010

1-December-2010

Euclidean Distance Map

⇨ Generate distance map using Danielsson's
algorithm

 Initialize a texture with (0, 0) for elements “inside” the
surface or (∞, ∞) for elements outside

 Perform 4 passes over the image propagating
distances among neighbors

 This is the 2D version... it can be trivially extended to
3D

© Copyright Ian D. Romanick 2009, 2010

1-December-2010

Euclidean Distance Map

⇨ Pass 1:
 Move the mask top-to-bottom, left-to-right
 The green element is the pixel being examined, the

others are its neighbors
 Add the specified offsets to the pixel distance values,

store the minimum in the pixel

(1,0) (0,0)

(0,1)

© Copyright Ian D. Romanick 2009, 2010

1-December-2010

Euclidean Distance Map

⇨ Pass 2:
 Move the mask top-to-bottom, right-to-left
 The green element is the pixel being examined, the

others are its neighbors
 Add the specified offsets to the pixel distance values,

store the minimum in the pixel

(0,0) (1,0)

© Copyright Ian D. Romanick 2009, 2010

1-December-2010

Euclidean Distance Map

⇨ Pass 3:
 Move the mask bottom-to-top, right-to-left
 The green element is the pixel being examined, the

others are its neighbors
 Add the specified offsets to the pixel distance values,

store the minimum in the pixel

(1,0)(0,0)

(0,1)

© Copyright Ian D. Romanick 2009, 2010

1-December-2010

Euclidean Distance Map

⇨ Pass 4:
 Move the mask bottom-to-top, left-to-right
 The green element is the pixel being examined, the

others are its neighbors
 Add the specified offsets to the pixel distance values,

store the minimum in the pixel

(0,0)(1,0)

© Copyright Ian D. Romanick 2009, 2010

1-December-2010

Euclidean Distance Map

⇨ Final pass:
 Convert the distance vectors to distance scalars

© Copyright Ian D. Romanick 2009, 2010

1-December-2010

Displacement Mapping

⇨ Caveats:
 Take partial derivatives of input texture coordinate

and use those when sampling the final texture
 Otherwise the texture filtering will be wrong in weird ways

 Use dFdx() and dFdy() functions

© Copyright Ian D. Romanick 2009, 2010

1-December-2010

References

Donnelly, William. "Per-Pixel Displacement Mapping with Distance
Functions" in Fernando, Randima (editor) GPU Gems 2, Addison
Wesley, 2005.
http://download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch08.pdf

Fabbri, R., Costa, L. F., Torelli, J. C., and Bruno, O. M. 2008. 2D
Euclidean distance transform algorithms: A comparative survey.
ACM Computing Surveys 40, 1 (Feb. 2008), 1-44.
http://distance.sourceforge.net/
 You'll have to Google (with some effort!) for a live link to the

actual paper. :(

http://download.nvidia.com/developer/GPU_Gems_2/GPU_Gems2_ch08.pdf
http://distance.sourceforge.net/

© Copyright Ian D. Romanick 2009, 2010

1-December-2010

Next week...

⇨ Multiple render targets
⇨ Deferred shading

© Copyright Ian D. Romanick 2009, 2010

1-December-2010

Legal Statement

This work represents the view of the authors and does not necessarily
represent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

