
© Copyright Ian D. Romanick 2009, 2010

24-November-2010

VGP352 – Week 8

⇨ Agenda:
­ Texture rectangles
­ Post-processing

­ Full-screen post-processing overview
­ Filter kernels

­ Separable filters

­ Special effects
­ Water ripple

­ Depth of field

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Texture Rectangle

⇨ Cousin to 2D textures
­ Interface changes:

­ New texture target: GL_TEXTURE_RECTANGLE_ARB

­ New sampler type: sampler2DRect,
sampler2DRectShadow

­ New sampler functions: texture2DRect,
texture2DRectProj, etc.

­ Limitations:
­ No mipmaps

­ Minification filter must be GL_LINEAR or GL_NEAREST

­ Wrap mode must be one of GL_CLAMP_TO_EDGE,
GL_CLAMP_TO_BORDER, or GL_CLAMP

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Texture Rectangle

⇨ Added features:
­ Dimensions need not be power of two

­ Alas, now only a “feature” on old hardware

­ Accessed by non-normalized coordinates
­ Coordinates are [0, w]  [0, h]

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Post-processing Effects

⇨ Apply an image space effect to the rendered
scene after it has been drawn

­ Examples:
­ Blur
­ Enhance contrast
­ Heat “ripple”
­ Color-space conversion (e.g., black & white, sepia, etc.)
­ Many, many more

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Post-processing Effects

⇨ Overview:
­ Render scene to off-screen target (framebuffer object)

­ Off-screen target should be same size as on-screen window
­ Additional information may need to be generated

­ Render single, full-screen quad to window
­ Use original off-screen target as source texture
­ Configure texture coordinates to cover entire texture

­ Texture rectangles are really useful here

­ Configure fragment shader to perform desired effect

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Post-processing Effects

⇨ Configure projection matrix to remap [0, 0]  [w,
h] to [-1, 1]  [-1, 1] with parallel perspective

­ This is the same as the old glOrtho function

[
2

width
0 0 −1

0
2

height
0 −1

0 0 −1 0
0 0 0 1

]

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Post-processing Effects

⇨ Draw two full-screen triangles
­ Use pixel coordinates for both vertex positions and

texture coordinates
­ This assumes texture rectangles are being used

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Post-processing Effects

⇨ May need to access many neighbor texels in the
fragment shader

­ Can calculate these coordinates in the fragment
shader, but this uses valuable instructions

­ Instead use all of the available varying slots and pre-
calculate offset coordinates in the vertex shader

­ Query GL_MAX_VARYING_FLOATS to determine how many
slots are available

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Post-processing Effects

⇨ Offset texel locations can also be accessed with
textureOffset and friends

vec4 textureOffset(sampler2D s, vec2 p,
 ivec2 offset);

­ Integer offset must be known at compile time
­ Requires GLSL 1.30.
­ Available with EXT_gpu_shader4 as

texture2DOffset, texture2DRectOffset, etc.

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Filter Kernels

⇨ Can represent our filter operation as a sum of
products over a region of pixels

­ Each pixel is multiplied by a factor
­ Resulting products are accumulated

⇨ Commonly represented as an n×m matrix
­ This matrix is called the filter kernel
­ m is either 1 or is equal to n

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Filter Kernels

⇨ Uniform blur over 3x3 area:
­ Larger kernel size results in

more blurriness

1
9 [

1 1 1
1 1 1
1 1 1]

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Filter Kernels – Edge Detection

⇨ Edge detection

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Filter Kernels – Edge Detection

⇨ Edge detection
­ Take the difference of each pixel

and its left neighbor

px , y −p x−1, y 

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Filter Kernels – Edge Detection

⇨ Edge detection
­ Take the difference of each pixel

and its left neighbor

­ Take the difference of each pixel
and its right neighbor

p x , y −p x−1, y 

p x , y−p x1, y

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Filter Kernels – Edge Detection

⇨ Edge detection
­ Take the difference of each pixel

and its left neighbor

­ Take the difference of each pixel
and its right neighbor

­ Add the two together

p x , y −p x−1, y 

p x , y−p x1, y

2 p x , y−p x−1, y−p x1, y 

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Filter Kernels – Edge Detection

⇨ Rewrite as a kernel

[
0 0 0
−1 2 −1
0 0 0]

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Filter Kernels – Edge Detection

⇨ Rewrite as a kernel

⇨ Repeat in Y direction

[
0 0 0
−1 2 −1
0 0 0]

[
0 −1 0
−1 4 −1
0 −1 0]

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Filter Kernels – Edge Detection

⇨ Rewrite as a kernel

⇨ Repeat in Y direction

⇨ Repeat on diagonals

[
0 0 0
−1 2 −1
0 0 0]

[
0 −1 0
−1 4 −1
0 −1 0]

[
−1 −1 −1
−1 8 −1
−1 −1 −1]

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Sobel Edge Detection

⇨ Uses two filter kernels
­ One in the Y direction

­ One in the X direction
F x=[

1 0 −1
2 0 −2
1 0 −1]

F y=[
1 2 1
0 0 0
−1 −2 −1]

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Sobel Edge Detection

⇨ Apply each filter kernel to the image

­ G
x
 and G

y
 are the gradients in the x and y directions

­ The combined magnitude of these gradients can be
used to detect edges

Gx = F x∗A
G y = F y∗A

G=G x
2G y

2

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Sobel Edge Detection

Images from http://en.wikipedia.org/wiki/Sobel_operator

http://en.wikipedia.org/wiki/Sobel_operator

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Filter Kernels

⇨ Implement this easily on a GPU
­ Supply filter kernel as uniforms
­ Perform n2 texture reads
­ Apply kernel and write result

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Filter Kernels

⇨ Implement this easily on a GPU
­ Supply filter kernel as uniforms
­ Perform n2 texture reads
­ Apply kernel and write result

⇨ Perform n2 texture reads?!?

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Filter Kernels

⇨ Implement this easily on a GPU
­ Supply filter kernel as uniforms
­ Perform n2 texture reads
­ Apply kernel and write result

⇨ Perform n2 texture reads?!?
­ n larger than 4 or 5 won't work on most hardware
­ Since the filter is a sum of products, it could be done

in multiple passes

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Filter Kernels

⇨ Implement this easily on a GPU
­ Supply filter kernel as uniforms
­ Perform n2 texture reads
­ Apply kernel and write result

⇨ Perform n2 texture reads?!?
­ n larger than 4 or 5 won't work on most hardware
­ Since the filter is a sum of products, it could be done

in multiple passes
­ Or maybe there's a different way altogether...

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Separable Filter Kernels

⇨ Some 2D kernels can be re-written as the
product of 2 1D kernels

­ These kernels are called separable
­ Applying each 1D kernel requires n texture reads per

pixel, doing both requires 2n
­ 2n ≪ n2

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Separable Filter Kernels

⇨ 2D kernel is calculated as the outer-product of
the individual 1D kernels

A=aT b=[
a0b0 ⋯ a0 bn

⋮ ⋮
an b0 ⋯ an bn

]

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Separable Filter Kernels

⇨ The 2D Gaussian filter is
the classic separable
filter

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Separable Filter Kernels

⇨ The 2D Gaussian filter is
the classic separable
filter

­ Product of a Gaussian
along the X-axis

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Separable Filter Kernels

⇨ The 2D Gaussian filter is
the classic separable
filter

­ Product of a Gaussian
along the X-axis

­ ...and a Gaussian along
the Y-axis

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Separable Filter Kernels

⇨ Implementing on a GPU:
­ Use first 1D filter on source image to temporary image
­ Use second 1D filter on temporary image to window

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Separable Filter Kernels

⇨ Implementing on a GPU:
­ Use first 1D filter on source image to temporary image
­ Use second 1D filter on temporary image to window

⇨ Caveats:
­ Precision can be a problem in intermediate steps
­ May have to use floating-point output
­ Can also use 10-bit or 16-bit per component outputs

as well
­ Choice ultimately depends on what the hardware supports

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

References

http://www.archive.org/details/Lectures_on_Image_Processing

http://www.archive.org/details/Lectures_on_Image_Processing

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Ripple Effect

 Note the frame-to-frame difference

Image from Enemy Territory: Quake Wars,  Copyright 2007 id Software, Inc.

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Ripple Effect

⇨ Render multiple passes:
1) Render scene normally to one texture

2) Render water surface to a separate texture
­ Instead of color, render a perturbation vector
­ Clear color is a perturbation vector of {0, 0}

3) Render final scene by using water texture to select
texels from scene texture

4) Render water over final scene

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Ripple Effect

Note the bleeding of out-of-
water elements into the ripples

Image from Enemy Territory: Quake Wars,  Copyright 2007 id Software, Inc.

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Optimization

⇨ Multiple texture look-ups for every pixel can be
expensive

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Optimization

⇨ Multiple texture look-ups for every pixel can be
expensive

­ Can render “effect area” to stencil buffer
­ Perform combine step in two passes:

­ First pass just copies areas where stencil is not set
­ Second pass performs effect in areas where stencil is set

­ Can be extended to select multiple screen-space
effects using different stencil values

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

References

Tutorials for several post-processing effects:
http://www.geeks3d.com/20091116/shader-library-2d-shockwave-post-processing-filter-glsl/

http://www.geeks3d.com/20091116/shader-library-2d-shockwave-post-processing-filter-glsl/

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Depth-of-field

⇨ What is depth of field?
“...the depth of field (DOF) is the portion of a scene
that appears acceptably sharp in the image.1”

1 http://en.wikipedia.org/wiki/Depth_of_field
Images also from http://en.wikipedia.org/wiki/Depth_of_field

http://en.wikipedia.org/wiki/Depth_of_field
http://en.wikipedia.org/wiki/Depth_of_field

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Depth-of-field

⇨ Why is DOF important?

Images from http://en.wikipedia.org/wiki/Depth_of_field

http://en.wikipedia.org/wiki/Depth_of_field

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Depth-of-field

⇨ Why is DOF important?
­ Draws viewer's attention
­ Gives added information about spatial relationships
­ etc.

Images from http://en.wikipedia.org/wiki/Depth_of_field

http://en.wikipedia.org/wiki/Depth_of_field

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Depth-of-field

⇨ Basic optics:
­ A point of light focused through a

lens becomes a point on the
object plane

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Depth-of-field

⇨ Basic optics:
­ A point of light focused through a

lens becomes a point on the
object plane

­ A point farther than the focal
distance becomes a blurry spot
on the object plane

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Depth-of-field

⇨ Basic optics:
­ A point of light focused through a

lens becomes a point on the
object plane

­ A point farther than the focal
distance becomes a blurry spot
on the object plane

­ A point closer than the focal
distance becomes a blurry spot
on the object plane

⇨ These blurry spots are called
circles of confusion (CoC
hereafter)

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Depth-of-field

⇨ In most real-time graphics, there is no depth-of-
field

­ Everything is perfectly in focus all the time

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Depth-of-field

⇨ In most real-time graphics, there is no depth-of-
field

­ Everything is perfectly in focus all the time
­ Most of the time this is okay

­ The player may want to focus on foreground and background
objects in rapid succession. Without eye tracking, the only
way this works is to have everything in focus.

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Depth-of-field

⇨ In most real-time graphics, there is no depth-of-
field

­ Everything is perfectly in focus all the time
­ Most of the time this is okay

­ The player may want to focus on foreground and background
objects in rapid succession. Without eye tracking, the only
way this works is to have everything in focus.

­ Under some circumstances, DOF can be a very
powerful tool

­ Non-interactive sequences
­ Special effects

­ Very effective use in the game Borderlands

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Depth-of-field

⇨ Straight-forward GPU implementation:
­ Render scene color and depth information to off-

screen targets
­ Post-process:

­ At each pixel determine CoC size based on depth value
­ Blur pixels within circle of confusion

­ To prevent in-focus data from bleeding into out-of-focus data, do not
use in-focus pixels that are closer than the center pixel

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Depth-of-field

⇨ Problem with this approach?

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Depth-of-field

⇨ Problem with this approach?
­ Fixed number of samples within CoC

­ Oversample for small CoC
­ Undersample for large CoC

­ Could improve quality with multiple passes, but
performance would suffer

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Depth-of-field

⇨ Simplified GPU implementation:
­ Render scene color and depth information to off-

screen targets
­ Post-process:

­ Down-sample image and Gaussian blur down-sampled
image

­ Reduced size and filter kernel size are selected to produce maximum
desired CoC size

­ Linearly blend between original image and blurred image
based on per-pixel CoC size

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Depth-of-field

⇨ Simplified GPU implementation:
­ Render scene color and depth information to off-

screen targets
­ Post-process:

­ Down-sample image and Gaussian blur down-sampled
image

­ Reduced size and filter kernel size are selected to produce maximum
desired CoC size

­ Linearly blend between original image and blurred image
based on per-pixel CoC size

⇨ Problems with this approach?

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Depth-of-field

⇨ Simplified GPU implementation:
­ Render scene color and depth information to off-

screen targets
­ Post-process:

­ Down-sample image and Gaussian blur down-sampled
image

­ Reduced size and filter kernel size are selected to produce maximum
desired CoC size

­ Linearly blend between original image and blurred image
based on per-pixel CoC size

⇨ Problems with this approach?
­ No way to prevent in-focus data from bleeding into

out-of-focus data

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Depth-of-Field

⇨ “Gather” methods can't make objects obscured
in the single image be visible in the blurred
image

Images from [Lee 2009]

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

References

J. D. Mulder, R. van Liere. Fast Perception-Based Depth of Field
Rendering, In Proceedings of the ACM Symposium on Virtual Reality
Software and Technology (Seoul, Korea, October 22 - 25, 2000). VRST
'00. ACM, New York, NY, 129-133.
http://homepages.cwi.nl/~mullie/Work/Pubs/publications.html

Guennadi Riguer, Natalya Tatarchuk, John Isidoro. Real-time Depth of
Field Simulation, In ShaderX2, Wordware Publishing, Inc., October 25,
2003.
http://developer.amd.com/documentation/reading/pages/ShaderX.aspx

M. Kass, A. Lefohn, J. Owens. 2006. Interactive Depth of Field Using
Simulated Diffusion on a GPU. Technical Memo #06-01, Pixar
Animation Studios. http://graphics.pixar.com/library/DepthOfField/

Sungkil Lee, Elmar Eisemann, and Hans-Peter Seidel. 2009. Depth-of-field
rendering with multiview synthesis. ACM Transactions on Graphics. 28,
5, Article 134 (December 2009). http://www.mpi-inf.mpg.de/~slee/pub/

http://homepages.cwi.nl/~mullie/Work/Pubs/publications.html
http://developer.amd.com/documentation/reading/pages/ShaderX.aspx
http://graphics.pixar.com/library/DepthOfField/
http://www.mpi-inf.mpg.de/~slee/pub/

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Next week...

⇨ Quiz #4
⇨ Beyond bumpmaps:
­ Relief textures
­ Parallax textures
­ Interior mapping

© Copyright Ian D. Romanick 2009, 2010

24-November-2010

Legal Statement

This work represents the view of the authors and does not necessarily
represent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

