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VGP352 – Week 6

⇨ Agenda:
­ Illuminating infinitesimal strands

­ Piles of math leading to the Banks BRDF
­ General “strand” model for anisotropic surfaces

­ Goldman's “fakefur”
­ Implementing BRDFs in real-time
­ Fins-and-shells for fur
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Hair

⇨ How do we calculate illumination for an 
infinitesimal strand or fiber?
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Terminology – Codimension

⇨ Definition:
Given an object of dimension n in a k dimensional 
space, with k > n, the codimension, c, is equal to k - n

­ For a surface in 3-space, n = 2 and k = 3
­ When c = 1, we can trivially assign a normal to the object
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Terminology – Codimension

⇨ Definition:
Given an object of dimension n in a k dimensional 
space, with k > n, the codimension, c, is equal to k - n

­ For a surface in 3-space, n = 2 and k = 3
­ When c = 1, we can trivially assign a normal to the object

­ For a line in 3-space, n = 1 and k = 3
­ When c > 1, things get a little weird...
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Terminology – Codimension

⇨ Another way to think of it:  The normal has c 
degrees of freedom

­ For a plane in 3-space, the normal can point in one of 
two directions (up or down)

­ k – n = c ⇒ 3 – 2 = 1

­ It's only degree of freedom is its magnitude
­ If we restrict the space to normalized vectors, there are only 

two possible values
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Terminology – Vector Spaces

⇨ Definition:
A vector space is a mathematical structure formed by 
a collection of vectors: objects that may be added 
together and multiplied ("scaled") by numbers, called 
scalars in this context.1

1From http://en.wikipedia.org/wiki/Vector_space

http://en.wikipedia.org/wiki/Vector_space
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Terminology – Vector Spaces

⇨ T is the tangent-space at some point on the 
object

­ Vector space tangent to the point on the object
­ Specifically, all of the possible tangent vectors at that 

location

­ Has dimension n (same as the object)

⇨ N is the normal-space at some point on the 
object

­ Vector space orthogonal to T
­ Specifically, all of the possible normal vectors at that location

­ Has dimension c (codimension of the object)
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Terminology – Vector Projections

⇨ x
N
 is the projection of vector x onto N

⇨ x
T
 is the projection of vector x onto T

T

N

x

x
N
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Terminology – Vector Projections

⇨ How do we project a vector onto a plane?

T

N

x

x
N
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Terminology – Vector Projections

⇨ How do we project a vector onto a plane?
­ Fun facts:

­  x
N
 = x – x

T

­ |x
T
| = cos(x, T) = x⋅T  x

T
 = (x⋅T)T

­ |x
N
| = sin(x, T)

T

N

x

x
N
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Diffuse Reflection

⇨ Using this terminology, diffuse reflection can be 
calculated as:

⇨ Since N and T are orthogonal, we can rewrite 
this as:

idiffuse=kd

cos  l , lN

∣l∣∣lN∣

idiffuse=kd

sin  l , lT

∣l∣∣lT∣
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Specular Reflection

⇨ Phong specular reflection:

r=n−2n⋅l  l
ispecular=ks ilight cos v ,rs
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Specular Reflection

⇨ When c > 1, there are infinite possible n vectors, 
so there are infinite possible r vectors

T

Nl
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Fermat's Principle

⇨ Fermat's principle says that light travels on the 
shortest length path

­ This means that l, l
N
, and r are coplanar

­ Skipping a bit of derivation, this means that l
N
 is equal 

to r
N

­ Skipping a bit more derivation, this means that vr 
can be calculated as:

v⋅r=vT⋅lT−∣vN∣∣lN∣
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Specular Reflection

⇨ vr can be calculated as:

­ But we don't initially know v
T
, l

T
, v

N
, or l

N

v⋅r = vT⋅lT−∣vN∣∣lN∣
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Specular Reflection

⇨ vr can be calculated as:

­ But we don't initially know v
T
, l

T
, v

N
, or l

N

v⋅r = vT⋅lT−∣vN∣∣lN∣

v⋅r = vT⋅lT−∣vN∣∣lN∣
= vT⋅lT−sin v , t sin l , t 
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Specular Reflection

⇨ vr can be calculated as:

­ But we don't initially know v
T
, l

T
, v

N
, or l

N

v⋅r = vT⋅lT−∣vN∣∣lN∣

v⋅r = vT⋅lT−∣vN∣∣lN∣
= vT⋅lT−sin v , t sin l , t 

= v⋅t  t ⋅ l⋅t  t −sin v , t sin  l , t 
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Specular Reflection

⇨ vr can be calculated as:

­ But we don't initially know v
T
, l

T
, v

N
, or l

N

v⋅r = vT⋅lT−∣vN∣∣lN∣

v⋅r = vT⋅lT−∣vN∣∣lN∣
= vT⋅lT−sin v , t sin l , t 

= v⋅t  t ⋅ l⋅t  t −sin v , t sin  l , t 
= v⋅t  l⋅t t⋅t  −sinv , t sin  l , t 
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Specular Reflection

⇨ vr can be calculated as:

­ But we don't initially know v
T
, l

T
, v

N
, or l

N

v⋅r = vT⋅lT−∣vN∣∣lN∣

v⋅r = vT⋅lT−∣vN∣∣lN∣
= vT⋅lT−sin v , t sin l , t 

= v⋅t  t ⋅ l⋅t  t −sin v , t sin  l , t 
= v⋅t  l⋅t t⋅t  −sinv , t sin  l , t 
= v⋅t  l⋅t −sin v , t sin l , t 
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Specular Reflection

⇨ vr can be calculated as:

­ But we don't initially know v
T
, l

T
, v

N
, or l

N

v⋅r = vT⋅lT−∣vN∣∣lN∣

v⋅r = vT⋅lT−∣vN∣∣lN∣
= vT⋅lT−sin v , t sin l , t 

= v⋅t  t ⋅ l⋅t  t −sin v , t sin  l , t 
= v⋅t  l⋅t t⋅t  −sinv , t sin  l , t 
= v⋅t l⋅t −sin v , t sin l , t 

= v⋅t l⋅t −1−cosv , t 21−cos  l , t2
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Specular Reflection

⇨ vr can be calculated as:

­ But we don't initially know v
T
, l

T
, v

N
, or l

N

v⋅r = vT⋅lT−∣vN∣∣lN∣

v⋅r = vT⋅lT−∣vN∣∣lN∣
= vT⋅lT−sin v , t sin l , t 

= v⋅t  t ⋅ l⋅t  t −sin v , t sin  l , t 
= v⋅t  l⋅t t⋅t  −sinv , t sin  l , t 
= v⋅t l⋅t −sin v , t sin l , t 

= v⋅t l⋅t −1−cosv , t 21−cos  l , t2
= v⋅t l⋅t −1−v⋅t 21− l⋅t 2 
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Inherited Self-Shadowing

⇨ When c = 1, the object has at most 2 sides
­ One side of the surface “self-shadows” the other
­ We get that calculation for free from nl
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Inherited Self-Shadowing

⇨ When c = 1, the object has at most 2 sides
­ One side of the surface “self-shadows” the other
­ We get that calculation for free from nl

⇨ Consider a surface with a 2D tangent space, T, and a 
1D vector field, V

­ If T is used to calculate the illumination, n
surface

l works

­ If V is used to calculate the illumination, there is no 
unique n to use

Think of bristles on a surface
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Inherited Self-Shadowing

⇨ When c = 1, the object has at most 2 sides
­ One side of the surface “self-shadows” the other
­ We get that calculation for free from nl

⇨ Consider a surface with a 2D tangent space, T, and a 
1D vector field, V

­ If T is used to calculate the illumination, n
surface

l works

­ If V is used to calculate the illumination, there is no 
unique n to use

­ If V is used to calculate the illumination, it can inherit 
n

surface
l from T

iconditioned=max n⋅l ,0 idiffuseispecular
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Vector Field Shadowing

⇨ This shadows the vector field from the surface
­ If the vectors lie outside the surface (e.g., fur) the 

vector field can obviously shadow itself and the 
surface

⇨ Input light energy is attenuated by:

­ h is the distance from the surface
­  is a property of the fur

­ The paper uses  = 0.02

d=h /sin t , l 
iatten=isource1−d
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Strand Based Anisotropic Lighting

⇨ Why limit the use of this lighting model to 
individual strands?

­ We can treat many types of anisotropic surfaces as a 
collection of many strands... and apply the same 
lighting technique!

Image from ShaderX, Wordware Publishing, Inc.
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fakefur

⇨ Developed by Dan Goldman at ILM
­ A much faster version of the “realfur” algorithm used 

at ILM for close-up shots



© Copyright Ian D. Romanick 2009, 2010

10-November-2010

fakefur

⇨ Makes several simplifying assumptions:
­ Geometry of individual hairs is not visible
­ Hairs are truncated cones
­ The length of each cone is much greater than the 

radius of either end
­ Can't be used to render 5 o'clock shadow!

­ Radius of the base is greater than the radius of the 
other end

­ All hairs in an area have identical geometry
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Algorithm Overview

⇨ Compute average hair geometry in sample area
⇨ For each light:

­ Compute hair-over-hair shadow attenuation
­ Compute reflected luminance of hair
­ Compute hair-over-skin shadow attenuation
­ Compute reflected luminance of skin
­ Compute hair / skin visibility ratio
­ Blend skin and hair reflected luminances using hair / 

skin visibility ratio

⇨ Sum per-light calculated values
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Illumination Function

⇨ Why is sine used instead of cosine?

diffuse = kd sin t , l 

specular = ks t⋅lt⋅v sin t , lsin t , v  
p

hair = diffusespecular
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Illumination Function

⇨ Why is sine used instead of cosine?
­ We treat the hair as having dimension = 1

­ There are infinite possible normals
­ There is only one tangent

This should look familiar!

diffuse = kd sin t , l 

specular = ks t⋅lt⋅v sin t , lsin t , v  
p

hair = diffusespecular
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Illumination Function

⇨ What's wrong here?

diffuse = kd sin t , l 

specular = ks t⋅lt⋅v sin t , lsin t , v  
p

hair = diffusespecular
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Illumination Function

⇨ What's wrong here?
­ Lacks directionality

­ Hairs are fully lit even if l is opposite v

­ Fix this by adding some new attenuation factors

diffuse = kd sin t , l 

specular = ks t⋅lt⋅v sin t , lsin t , v  
p

hair = diffusespecular
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Relative Directionality

­  > 0 when l and v are on the same side of the hair 
(frontlighting)

­  < 0 when l and v are on opposite sides of the hair 
(backlighting)

=
 t×l ⋅t×v 
∣t×l∣∣t×v∣

t

lv

t

l

v

Back lighting Front lighting
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Directional Attenuation Factor

­ 
reflect

 and 
transmit

 are parameters of the hair on the 

range [0, 1]

­ White and gray hairs have 
reflect

 and 
transmit

 equal or 

nearly equal

­ Colored hairs have 
reflect

 > 
transmit

f dir=
1

2
reflect

1−

2
transmit
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Directional Attenuation Factor

­ 
reflect

 and 
transmit

 are parameters of the hair on the 

range [0, 1]

­ White and gray hairs have 
reflect

 and 
transmit

 equal or 

nearly equal

­ Colored hairs have 
reflect

 > 
transmit

­ Unless you're a kitten...

f dir=
1

2
reflect

1−

2
transmit
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Self-Shadowing

⇨ Controlled by a second attenuation factor and 3 
new parameters:

­ 
surface

 controls the amount of self-shadowing

­ 
min

 is the minimum angle where shadowing occurs

­ 
max

 is the angle beyond which there is total occlusion

f surface=1surface smoothstep n⋅l ,min ,max−1 
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Fur Opacity

⇨ How much of the surface below the fur can be 
seen through the fur?

­ Contributing factors:
­ Hair density: More hairs result in more occlusion
­ Hair size: Larger (thicker) hairs individually occlude more
­ Hair orientation: Hairs “laying down” occlude more than hairs 

on end

On end
Laying down

­ Orientation relative to both the 
viewer and the underlying surface 
are factors

⇨ How much of the surface below the fur can be 
seen through the fur?

­ Contributing factors:
­ Hair density: More hairs result in more occlusion
­ Hair size: Larger (thicker) hairs individually occlude more
­ Hair orientation: Hairs “laying down” occlude more than hairs 

on end

⇨ How much of the surface below the fur can be 
seen through the fur?

­ Contributing factors:
­ Hair density: More hairs result in more occlusion
­ Hair size: Larger (thicker) hairs individually occlude more
­ Hair orientation: Hairs “laying down” occlude more than hairs 

on end
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Fur Opacity

⇨ How much of the surface below the fur can be 
seen through the fur?

­ d is the local hair density

­ a
h
 is the projection of the surface area of a hair onto 

the view plane

f = 1−
1

ed ah g v , t ,n 

g v , t ,n =
sin v , t 

v⋅n
ah = lhairr baser top/2
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Putting It All Together

⇨ Put the attenuation factors together with the 
opacity and skin color:

­ 
skin

 is calculated by some other means

hair = f dir f surface diffusespecular 

skin = k light 1−fskin

hair = k light 1−
f

2
hair

f = fhair1−f skin
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Implementing BRDFs in Real-Time

⇨ BRDF formulations assume integration over all 
incoming light in the positive hemisphere

­ Clearly impractical for real-time rendering!
­ Not very practical for off-line rendering either...

⇨ Four high-level strategies:
­ Only implement point lights

­ Direction implementation
­ Factorization

­ Reflection map based pre-filtering / pre-calculation
­ Monte Carlo sampling
­ Deferred shading based techniques
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Point Light Direct Implementation

⇨ Use l for 
i
 and v for 

o
 and directly implement 

the math
­ We already do this for Phong lighting
­ More complex lighting equations can be prohibitively 

expensive
­ Since we're not integrating over the hemisphere, 

multiply the BRDF by 
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Factorization

⇨ Expensive equations can be factored into sums 
or products of functions of fewer variables

­ Each input vector (i.e., v, l, h, n, etc.) or dot-product of 
vectors becomes an input to one function

­ Each function is stored in some sort of texture
­ This technique works really well for sampled BRDFs

⇨ Using two textures, the Poulin-Fournie 
anisotropic satin BRDF can be implemented as:

­ p() and q() represent texture look-ups and  is a 
special scaling factor

 p v q h  p  l
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Factorization

⇨ Remember the Banks BRDF for strands:

v⋅r=v⋅t  l⋅t −1−v⋅t 21− l⋅t 2
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Factorization

⇨ Remember the Banks BRDF for strands:

­ Note that v⋅r is a function of two dot-products
­ Store all possible values of v⋅r in a 2D texture and 

sample this texture using v⋅t and l⋅t

Image from ShaderX, Wordware Publishing, Inc.

v⋅r=v⋅t  l⋅t −1−v⋅t 21− l⋅t 2
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Reflection Maps

⇨ Reflection maps present additional challenges
­ Decent lighting require multiple samples

⇨ As with the Phong lighting model, reflection 
maps can be pre-filtered using complex BRDFs

­ Doesn't work well with dynamic env. maps
­ Doesn't work at all with aniostropic BRDFs

­ The ideal reflection vector isn't enough information!
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Grid Sampling

⇨ Sample the reflection map at multiple, 
predetermined locations, use the sample vectors 
and the sampled values in the lighting equation
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Grid Sampling

⇨ Sample the reflection map at multiple, 
predetermined locations, use the sample vectors 
and the sampled values in the lighting equation

­ Might not sample the most important vectors for the 
lighting equation

­ For most equations, samples closer r are more important
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Grid Sampling

⇨ Sample the reflection map at multiple, 
predetermined locations, use the sample vectors 
and the sampled values in the lighting equation

­ Might not sample the most important vectors for the 
lighting equation

­ For most equations, samples closer r are more important

­ Might not sample the most important vectors for the 
reflection map

­ If most of the refelction map is dark with just a few bright 
spots, those bright spots are more important

­ This problem is especially difficult to solve
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Monte Carlo Integration

⇨ Instead of sampling at regular intervals, sample 
at pseudo-random locations
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Monte Carlo Integration

Images from “Real-time Shading with Filtered Importance Sampling”
http://graphics.cs.ucf.edu/gpusampling/filter_is_intel.ppt

Images rendered with 40 
samples per-fragment

http://graphics.cs.ucf.edu/gpusampling/filter_is_intel.ppt
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Monte Carlo Integration

⇨ Instead of sampling at regular intervals, sample 
at pseudo-random locations

­ Must sample many locations to eliminate noise
­ Where “many” may mean thousands

­ Or determine the random locations with a BRDF-
dependent probability density function (PDF)

­ Several of the papers from this term include a PDF for the 
BRDF

­ Still several problems:
­ Generating good random numbers on the GPU is hard

­ Requires quite a few samples

­ Colbert and Křivánek found that around 40 looks good
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Monte Carlo Integration

⇨ Monte Carlo estimator for a BRDF:

­ p is the PDF

­ u
k
 is a random light direction generated based on the 

PDF
­ Typically generate a uniform random value and remap it 

based on the PDF

Lv ≈
1
n∑k=1

n Li uk  f uk , vcosuk

puk , v
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Monte Carlo Integration

Images from “Real-time Shading with Filtered Importance Sampling”
http://graphics.cs.ucf.edu/gpusampling/filter_is_intel.ppt

Images rendered with 40 
samples per-fragment

http://graphics.cs.ucf.edu/gpusampling/filter_is_intel.ppt
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Monte Carlo Integration

⇨ Deterministic importance sampling causes 
unacceptable aliasing effects

­ Less important samples (i.e., less probable) are low-
weighted individual points

­ Observe that neighbors of less probably samples are 
unlikely to be sampled

­ Allow those neighbors to contribute by using the PDF to 
select a mipmap level in the reflection map

­ Higher mipmap levels average larger regions into a single 
texel

­ Cube maps have weird distortion away from the axes, so a 
different type of reflection map should be used

­ The paper suggests dual-paraboloid maps
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Monte Carlo Integration

Images from “Real-time Shading with Filtered Importance Sampling”
http://graphics.cs.ucf.edu/gpusampling/filter_is_intel.ppt

Images rendered with 40 
samples per-fragment

http://graphics.cs.ucf.edu/gpusampling/filter_is_intel.ppt
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Volumetric Fur

⇨ Close-up, fur appears as a volumetric effect
⇨ Kajika and Kay presented an algorithm at 

SIGGRAPH '89 implementing fur via 3D textures
­ Volumetric textures are very memory intensive
­ Kajika and Kay's model involves several 

computationally expensive steps

⇨ Not practical for real-time
­ There has to be a different way!
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Shells and Fins

⇨ Instead of a 3D texture, fur can be implemented 
with a “stack” of 2D textures

­ Each layer in the stack represents the fur at a 
different depth

­ Draw each layer in a progressively larger “shell” 
around the original object geometry
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Shells and Fins

⇨ Drawing loop:
­ Draw base object with inner-most (call it level 0) fur 

texture
­ Disable alpha blending
­ Enable z-testing
­ Enable z-writing

­ Draw base geometry moved out some small step 
along the normals

­ Enable alpha blending
­ Enable z-testing
­ Disable z-writing
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Shells and Fins

⇨ But this looks bad along the silhouette 
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Shells and Fins

⇨ Add fin geometry to each polygon
­ Create fin textures to look like side-on view of fur
­ Draw fin after drawing all shells

­ Enable alpha blending
­ Enable z-testing
­ Disable z-writing
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Shells and Fins

⇨ Generate fin geometry in the vertex shader:
­ Draw each vertex twice

­ Once with w = 0
­ Once with w = 1

­ Use the w value to determine whether or not to 
extrude the vertex in the normal direction

­ Draw the vertices as two triangles:
­ One with vertices 0, 1, 1
­ The other with vertices 1, 0, 0
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Shells and Fins

⇨ But this looks bad in non-silhouette areas
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Shells and Fins

⇨ Gradually blend in fins as they approach the 
silhouette

⇨ We don't really have a fin normal...what to do?

fin=max 0,2∣cos v ,nfin∣−1
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Shells and Fins

⇨ Gradually blend in fins as they approach the 
silhouette

⇨ We don't really have a fin normal...what to do?
­ The surface's normal is the fin's tangent

fin=max 0,2∣sin v ,nsurface∣−1

fin=max 0,2∣cos v ,nfin∣−1
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Shells and Fins

⇨ Alpha blended fins
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Lighting Shells and Fins

⇨ Use the surface normal as the direction of the 
hair

­ p
d
 and p

s
 are diffuse and specular exponents

­ Similar to Goldman's fakefur lighting model

⇨ A little trig-identity love gets us:

k=kd sin nsurface , l pdks sin nsurface ,hps

k = kd 1−cos2
nsurface , l 

pd /2
ks 1−cos2

nsurface ,h
ps/2

= kd 1−nsurface⋅l
2 

pd /2
ks 1−nsurface⋅h 

2
ps/2
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Lighting Shells and Fins

⇨ No shadowing happens!
­ Fur near the skin is occluded by the fur above it
­ Add a shadowing term to falloff to a minimum value 

linearly with the distance from the outermost shell

­ d is the current shell distance
­ d = 0 is the shell closest to the skin

­ d
max

 is the total number of shells

­ s
min

 is the minimum amount of light reaching the bottom layer

s=
d 1−smin

dmax

smin
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Next week...

⇨ Quiz #3
⇨ Non-photorealistic rendering
­ Cel (toon) shading
­ Silhouette edge rendering
­ Technical illustration

⇨ Begin post-processing / image space effects
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Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service 
marks of others.
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