
© Copyright Ian D. Romanick 2009, 2010

10-November-2010

VGP352 – Week 6

⇨ Agenda:
­ Illuminating infinitesimal strands

­ Piles of math leading to the Banks BRDF
­ General “strand” model for anisotropic surfaces

­ Goldman's “fakefur”
­ Implementing BRDFs in real-time
­ Fins-and-shells for fur

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Hair

⇨ How do we calculate illumination for an
infinitesimal strand or fiber?

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Terminology – Codimension

⇨ Definition:
Given an object of dimension n in a k dimensional
space, with k > n, the codimension, c, is equal to k - n

­ For a surface in 3-space, n = 2 and k = 3
­ When c = 1, we can trivially assign a normal to the object

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Terminology – Codimension

⇨ Definition:
Given an object of dimension n in a k dimensional
space, with k > n, the codimension, c, is equal to k - n

­ For a surface in 3-space, n = 2 and k = 3
­ When c = 1, we can trivially assign a normal to the object

­ For a line in 3-space, n = 1 and k = 3
­ When c > 1, things get a little weird...

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Terminology – Codimension

⇨ Another way to think of it: The normal has c
degrees of freedom

­ For a plane in 3-space, the normal can point in one of
two directions (up or down)

­ k – n = c ⇒ 3 – 2 = 1

­ It's only degree of freedom is its magnitude
­ If we restrict the space to normalized vectors, there are only

two possible values

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Terminology – Vector Spaces

⇨ Definition:
A vector space is a mathematical structure formed by
a collection of vectors: objects that may be added
together and multiplied ("scaled") by numbers, called
scalars in this context.1

1From http://en.wikipedia.org/wiki/Vector_space

http://en.wikipedia.org/wiki/Vector_space

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Terminology – Vector Spaces

⇨ T is the tangent-space at some point on the
object

­ Vector space tangent to the point on the object
­ Specifically, all of the possible tangent vectors at that

location

­ Has dimension n (same as the object)

⇨ N is the normal-space at some point on the
object

­ Vector space orthogonal to T
­ Specifically, all of the possible normal vectors at that location

­ Has dimension c (codimension of the object)

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Terminology – Vector Projections

⇨ x
N
 is the projection of vector x onto N

⇨ x
T
 is the projection of vector x onto T

T

N

x

x
N

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Terminology – Vector Projections

⇨ How do we project a vector onto a plane?

T

N

x

x
N

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Terminology – Vector Projections

⇨ How do we project a vector onto a plane?
­ Fun facts:

­ x
N
 = x – x

T

­ |x
T
| = cos(x, T) = x⋅T  x

T
 = (x⋅T)T

­ |x
N
| = sin(x, T)

T

N

x

x
N

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Diffuse Reflection

⇨ Using this terminology, diffuse reflection can be
calculated as:

⇨ Since N and T are orthogonal, we can rewrite
this as:

idiffuse=kd

cos  l , lN

∣l∣∣lN∣

idiffuse=kd

sin  l , lT

∣l∣∣lT∣

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Specular Reflection

⇨ Phong specular reflection:

r=n−2n⋅l  l
ispecular=ks ilight cos v ,rs

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Specular Reflection

⇨ When c > 1, there are infinite possible n vectors,
so there are infinite possible r vectors

T

Nl

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Fermat's Principle

⇨ Fermat's principle says that light travels on the
shortest length path

­ This means that l, l
N
, and r are coplanar

­ Skipping a bit of derivation, this means that l
N
 is equal

to r
N

­ Skipping a bit more derivation, this means that vr
can be calculated as:

v⋅r=vT⋅lT−∣vN∣∣lN∣

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Specular Reflection

⇨ vr can be calculated as:

­ But we don't initially know v
T
, l

T
, v

N
, or l

N

v⋅r = vT⋅lT−∣vN∣∣lN∣

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Specular Reflection

⇨ vr can be calculated as:

­ But we don't initially know v
T
, l

T
, v

N
, or l

N

v⋅r = vT⋅lT−∣vN∣∣lN∣

v⋅r = vT⋅lT−∣vN∣∣lN∣
= vT⋅lT−sin v , t sin l , t 

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Specular Reflection

⇨ vr can be calculated as:

­ But we don't initially know v
T
, l

T
, v

N
, or l

N

v⋅r = vT⋅lT−∣vN∣∣lN∣

v⋅r = vT⋅lT−∣vN∣∣lN∣
= vT⋅lT−sin v , t sin l , t 

= v⋅t  t ⋅ l⋅t  t −sin v , t sin  l , t 

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Specular Reflection

⇨ vr can be calculated as:

­ But we don't initially know v
T
, l

T
, v

N
, or l

N

v⋅r = vT⋅lT−∣vN∣∣lN∣

v⋅r = vT⋅lT−∣vN∣∣lN∣
= vT⋅lT−sin v , t sin l , t 

= v⋅t  t ⋅ l⋅t  t −sin v , t sin  l , t 
= v⋅t  l⋅t t⋅t  −sinv , t sin  l , t 

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Specular Reflection

⇨ vr can be calculated as:

­ But we don't initially know v
T
, l

T
, v

N
, or l

N

v⋅r = vT⋅lT−∣vN∣∣lN∣

v⋅r = vT⋅lT−∣vN∣∣lN∣
= vT⋅lT−sin v , t sin l , t 

= v⋅t  t ⋅ l⋅t  t −sin v , t sin  l , t 
= v⋅t  l⋅t t⋅t  −sinv , t sin  l , t 
= v⋅t  l⋅t −sin v , t sin l , t 

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Specular Reflection

⇨ vr can be calculated as:

­ But we don't initially know v
T
, l

T
, v

N
, or l

N

v⋅r = vT⋅lT−∣vN∣∣lN∣

v⋅r = vT⋅lT−∣vN∣∣lN∣
= vT⋅lT−sin v , t sin l , t 

= v⋅t  t ⋅ l⋅t  t −sin v , t sin  l , t 
= v⋅t  l⋅t t⋅t  −sinv , t sin  l , t 
= v⋅t l⋅t −sin v , t sin l , t 

= v⋅t l⋅t −1−cosv , t 21−cos  l , t2

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Specular Reflection

⇨ vr can be calculated as:

­ But we don't initially know v
T
, l

T
, v

N
, or l

N

v⋅r = vT⋅lT−∣vN∣∣lN∣

v⋅r = vT⋅lT−∣vN∣∣lN∣
= vT⋅lT−sin v , t sin l , t 

= v⋅t  t ⋅ l⋅t  t −sin v , t sin  l , t 
= v⋅t  l⋅t t⋅t  −sinv , t sin  l , t 
= v⋅t l⋅t −sin v , t sin l , t 

= v⋅t l⋅t −1−cosv , t 21−cos  l , t2
= v⋅t l⋅t −1−v⋅t 21− l⋅t 2 

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Inherited Self-Shadowing

⇨ When c = 1, the object has at most 2 sides
­ One side of the surface “self-shadows” the other
­ We get that calculation for free from nl

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Inherited Self-Shadowing

⇨ When c = 1, the object has at most 2 sides
­ One side of the surface “self-shadows” the other
­ We get that calculation for free from nl

⇨ Consider a surface with a 2D tangent space, T, and a
1D vector field, V

­ If T is used to calculate the illumination, n
surface

l works

­ If V is used to calculate the illumination, there is no
unique n to use

Think of bristles on a surface

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Inherited Self-Shadowing

⇨ When c = 1, the object has at most 2 sides
­ One side of the surface “self-shadows” the other
­ We get that calculation for free from nl

⇨ Consider a surface with a 2D tangent space, T, and a
1D vector field, V

­ If T is used to calculate the illumination, n
surface

l works

­ If V is used to calculate the illumination, there is no
unique n to use

­ If V is used to calculate the illumination, it can inherit
n

surface
l from T

iconditioned=max n⋅l ,0 idiffuseispecular

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Vector Field Shadowing

⇨ This shadows the vector field from the surface
­ If the vectors lie outside the surface (e.g., fur) the

vector field can obviously shadow itself and the
surface

⇨ Input light energy is attenuated by:

­ h is the distance from the surface
­  is a property of the fur

­ The paper uses  = 0.02

d=h /sin t , l 
iatten=isource1−d

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Strand Based Anisotropic Lighting

⇨ Why limit the use of this lighting model to
individual strands?

­ We can treat many types of anisotropic surfaces as a
collection of many strands... and apply the same
lighting technique!

Image from ShaderX, Wordware Publishing, Inc.

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

References

Banks, D. C. 1994. Illumination in diverse codimensions. In Proceedings of the
21st Annual Conference on Computer Graphics and interactive Techniques
SIGGRAPH '94. ACM, New York, NY, 327-334.
http://lmi.bwh.harvard.edu/~banks/

Isidoro, John and Brennan, Chris. "Per-Pixel Strand Based Anisotropic Lighting" in
Engel, Wolfgang F. (editor) ShaderX, Wordware Publishing, Inc., May 2002.
http://developer.amd.com/documentation/reading/pages/ShaderX.aspx

http://lmi.bwh.harvard.edu/~banks/
http://developer.amd.com/documentation/reading/pages/ShaderX.aspx

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

fakefur

⇨ Developed by Dan Goldman at ILM
­ A much faster version of the “realfur” algorithm used

at ILM for close-up shots

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

fakefur

⇨ Makes several simplifying assumptions:
­ Geometry of individual hairs is not visible
­ Hairs are truncated cones
­ The length of each cone is much greater than the

radius of either end
­ Can't be used to render 5 o'clock shadow!

­ Radius of the base is greater than the radius of the
other end

­ All hairs in an area have identical geometry

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Algorithm Overview

⇨ Compute average hair geometry in sample area
⇨ For each light:

­ Compute hair-over-hair shadow attenuation
­ Compute reflected luminance of hair
­ Compute hair-over-skin shadow attenuation
­ Compute reflected luminance of skin
­ Compute hair / skin visibility ratio
­ Blend skin and hair reflected luminances using hair /

skin visibility ratio

⇨ Sum per-light calculated values

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Illumination Function

⇨ Why is sine used instead of cosine?

diffuse = kd sin t , l 

specular = ks t⋅lt⋅v sin t , lsin t , v  
p

hair = diffusespecular

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Illumination Function

⇨ Why is sine used instead of cosine?
­ We treat the hair as having dimension = 1

­ There are infinite possible normals
­ There is only one tangent

This should look familiar!

diffuse = kd sin t , l 

specular = ks t⋅lt⋅v sin t , lsin t , v  
p

hair = diffusespecular

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Illumination Function

⇨ What's wrong here?

diffuse = kd sin t , l 

specular = ks t⋅lt⋅v sin t , lsin t , v  
p

hair = diffusespecular

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Illumination Function

⇨ What's wrong here?
­ Lacks directionality

­ Hairs are fully lit even if l is opposite v

­ Fix this by adding some new attenuation factors

diffuse = kd sin t , l 

specular = ks t⋅lt⋅v sin t , lsin t , v  
p

hair = diffusespecular

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Relative Directionality

­  > 0 when l and v are on the same side of the hair
(frontlighting)

­  < 0 when l and v are on opposite sides of the hair
(backlighting)

=
 t×l ⋅t×v 
∣t×l∣∣t×v∣

t

lv

t

l

v

Back lighting Front lighting

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Directional Attenuation Factor

­ 
reflect

 and 
transmit

 are parameters of the hair on the

range [0, 1]

­ White and gray hairs have 
reflect

 and 
transmit

 equal or

nearly equal

­ Colored hairs have 
reflect

 > 
transmit

f dir=
1

2
reflect

1−

2
transmit

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Directional Attenuation Factor

­ 
reflect

 and 
transmit

 are parameters of the hair on the

range [0, 1]

­ White and gray hairs have 
reflect

 and 
transmit

 equal or

nearly equal

­ Colored hairs have 
reflect

 > 
transmit

­ Unless you're a kitten...

f dir=
1

2
reflect

1−

2
transmit

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Self-Shadowing

⇨ Controlled by a second attenuation factor and 3
new parameters:

­ 
surface

 controls the amount of self-shadowing

­ 
min

 is the minimum angle where shadowing occurs

­ 
max

 is the angle beyond which there is total occlusion

f surface=1surface smoothstep n⋅l ,min ,max−1 

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Fur Opacity

⇨ How much of the surface below the fur can be
seen through the fur?

­ Contributing factors:
­ Hair density: More hairs result in more occlusion
­ Hair size: Larger (thicker) hairs individually occlude more
­ Hair orientation: Hairs “laying down” occlude more than hairs

on end

On end
Laying down

­ Orientation relative to both the
viewer and the underlying surface
are factors

⇨ How much of the surface below the fur can be
seen through the fur?

­ Contributing factors:
­ Hair density: More hairs result in more occlusion
­ Hair size: Larger (thicker) hairs individually occlude more
­ Hair orientation: Hairs “laying down” occlude more than hairs

on end

⇨ How much of the surface below the fur can be
seen through the fur?

­ Contributing factors:
­ Hair density: More hairs result in more occlusion
­ Hair size: Larger (thicker) hairs individually occlude more
­ Hair orientation: Hairs “laying down” occlude more than hairs

on end

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Fur Opacity

⇨ How much of the surface below the fur can be
seen through the fur?

­ d is the local hair density

­ a
h
 is the projection of the surface area of a hair onto

the view plane

f = 1−
1

ed ah g v , t ,n 

g v , t ,n =
sin v , t 

v⋅n
ah = lhairr baser top/2

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Putting It All Together

⇨ Put the attenuation factors together with the
opacity and skin color:

­ 
skin

 is calculated by some other means

hair = f dir f surface diffusespecular 

skin = k light 1−fskin

hair = k light 1−
f

2
hair

f = fhair1−f skin

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Implementing BRDFs in Real-Time

⇨ BRDF formulations assume integration over all
incoming light in the positive hemisphere

­ Clearly impractical for real-time rendering!
­ Not very practical for off-line rendering either...

⇨ Four high-level strategies:
­ Only implement point lights

­ Direction implementation
­ Factorization

­ Reflection map based pre-filtering / pre-calculation
­ Monte Carlo sampling
­ Deferred shading based techniques

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Point Light Direct Implementation

⇨ Use l for 
i
 and v for 

o
 and directly implement

the math
­ We already do this for Phong lighting
­ More complex lighting equations can be prohibitively

expensive
­ Since we're not integrating over the hemisphere,

multiply the BRDF by 

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Factorization

⇨ Expensive equations can be factored into sums
or products of functions of fewer variables

­ Each input vector (i.e., v, l, h, n, etc.) or dot-product of
vectors becomes an input to one function

­ Each function is stored in some sort of texture
­ This technique works really well for sampled BRDFs

⇨ Using two textures, the Poulin-Fournie
anisotropic satin BRDF can be implemented as:

­ p() and q() represent texture look-ups and  is a
special scaling factor

 p v q h  p  l

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Factorization

⇨ Remember the Banks BRDF for strands:

v⋅r=v⋅t  l⋅t −1−v⋅t 21− l⋅t 2

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Factorization

⇨ Remember the Banks BRDF for strands:

­ Note that v⋅r is a function of two dot-products
­ Store all possible values of v⋅r in a 2D texture and

sample this texture using v⋅t and l⋅t

Image from ShaderX, Wordware Publishing, Inc.

v⋅r=v⋅t  l⋅t −1−v⋅t 21− l⋅t 2

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

References

University of Waterloo Factored BRDF Repository:
http://www.cgl.uwaterloo.ca/Projects/rendering/Shading/database.html

Michael D. McCool, Jason Ang, Anis Ahmad, Homomorphic Factorization
of BRDFs for High-Performance Rendering, SIGGAPH 2001, August
12-17, 2001. http://www.cgl.uwaterloo.ca/Projects/rendering/Papers/

http://www.cgl.uwaterloo.ca/Projects/rendering/Shading/database.html
http://www.cgl.uwaterloo.ca/Projects/rendering/Papers/

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Reflection Maps

⇨ Reflection maps present additional challenges
­ Decent lighting require multiple samples

⇨ As with the Phong lighting model, reflection
maps can be pre-filtered using complex BRDFs

­ Doesn't work well with dynamic env. maps
­ Doesn't work at all with aniostropic BRDFs

­ The ideal reflection vector isn't enough information!

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Grid Sampling

⇨ Sample the reflection map at multiple,
predetermined locations, use the sample vectors
and the sampled values in the lighting equation

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Grid Sampling

⇨ Sample the reflection map at multiple,
predetermined locations, use the sample vectors
and the sampled values in the lighting equation

­ Might not sample the most important vectors for the
lighting equation

­ For most equations, samples closer r are more important

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Grid Sampling

⇨ Sample the reflection map at multiple,
predetermined locations, use the sample vectors
and the sampled values in the lighting equation

­ Might not sample the most important vectors for the
lighting equation

­ For most equations, samples closer r are more important

­ Might not sample the most important vectors for the
reflection map

­ If most of the refelction map is dark with just a few bright
spots, those bright spots are more important

­ This problem is especially difficult to solve

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Monte Carlo Integration

⇨ Instead of sampling at regular intervals, sample
at pseudo-random locations

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Monte Carlo Integration

Images from “Real-time Shading with Filtered Importance Sampling”
http://graphics.cs.ucf.edu/gpusampling/filter_is_intel.ppt

Images rendered with 40
samples per-fragment

http://graphics.cs.ucf.edu/gpusampling/filter_is_intel.ppt

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Monte Carlo Integration

⇨ Instead of sampling at regular intervals, sample
at pseudo-random locations

­ Must sample many locations to eliminate noise
­ Where “many” may mean thousands

­ Or determine the random locations with a BRDF-
dependent probability density function (PDF)

­ Several of the papers from this term include a PDF for the
BRDF

­ Still several problems:
­ Generating good random numbers on the GPU is hard

­ Requires quite a few samples

­ Colbert and Křivánek found that around 40 looks good

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Monte Carlo Integration

⇨ Monte Carlo estimator for a BRDF:

­ p is the PDF

­ u
k
 is a random light direction generated based on the

PDF
­ Typically generate a uniform random value and remap it

based on the PDF

Lv ≈
1
n∑k=1

n Li uk  f uk , vcosuk

puk , v

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Monte Carlo Integration

Images from “Real-time Shading with Filtered Importance Sampling”
http://graphics.cs.ucf.edu/gpusampling/filter_is_intel.ppt

Images rendered with 40
samples per-fragment

http://graphics.cs.ucf.edu/gpusampling/filter_is_intel.ppt

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Monte Carlo Integration

⇨ Deterministic importance sampling causes
unacceptable aliasing effects

­ Less important samples (i.e., less probable) are low-
weighted individual points

­ Observe that neighbors of less probably samples are
unlikely to be sampled

­ Allow those neighbors to contribute by using the PDF to
select a mipmap level in the reflection map

­ Higher mipmap levels average larger regions into a single
texel

­ Cube maps have weird distortion away from the axes, so a
different type of reflection map should be used

­ The paper suggests dual-paraboloid maps

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Monte Carlo Integration

Images from “Real-time Shading with Filtered Importance Sampling”
http://graphics.cs.ucf.edu/gpusampling/filter_is_intel.ppt

Images rendered with 40
samples per-fragment

http://graphics.cs.ucf.edu/gpusampling/filter_is_intel.ppt

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

References

Colbert, M. and Křivánek, J. 2007. “Real-time shading with filtered
importance sampling.” In ACM SIGGRAPH 2007 Sketches (San Diego,
California, August 05 - 09, 2007). SIGGRAPH '07. ACM, New York,
NY, 71. http://graphics.cs.ucf.edu/gpusampling/

http://en.wikipedia.org/wiki/Monte_Carlo_integration

http://graphics.cs.ucf.edu/gpusampling/
http://en.wikipedia.org/wiki/Monte_Carlo_integration

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Volumetric Fur

⇨ Close-up, fur appears as a volumetric effect
⇨ Kajika and Kay presented an algorithm at

SIGGRAPH '89 implementing fur via 3D textures
­ Volumetric textures are very memory intensive
­ Kajika and Kay's model involves several

computationally expensive steps

⇨ Not practical for real-time
­ There has to be a different way!

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Shells and Fins

⇨ Instead of a 3D texture, fur can be implemented
with a “stack” of 2D textures

­ Each layer in the stack represents the fur at a
different depth

­ Draw each layer in a progressively larger “shell”
around the original object geometry

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Shells and Fins

⇨ Drawing loop:
­ Draw base object with inner-most (call it level 0) fur

texture
­ Disable alpha blending
­ Enable z-testing
­ Enable z-writing

­ Draw base geometry moved out some small step
along the normals

­ Enable alpha blending
­ Enable z-testing
­ Disable z-writing

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Shells and Fins

⇨ But this looks bad along the silhouette

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Shells and Fins

⇨ Add fin geometry to each polygon
­ Create fin textures to look like side-on view of fur
­ Draw fin after drawing all shells

­ Enable alpha blending
­ Enable z-testing
­ Disable z-writing

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Shells and Fins

⇨ Generate fin geometry in the vertex shader:
­ Draw each vertex twice

­ Once with w = 0
­ Once with w = 1

­ Use the w value to determine whether or not to
extrude the vertex in the normal direction

­ Draw the vertices as two triangles:
­ One with vertices 0, 1, 1
­ The other with vertices 1, 0, 0

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Shells and Fins

⇨ But this looks bad in non-silhouette areas

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Shells and Fins

⇨ Gradually blend in fins as they approach the
silhouette

⇨ We don't really have a fin normal...what to do?

fin=max 0,2∣cos v ,nfin∣−1

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Shells and Fins

⇨ Gradually blend in fins as they approach the
silhouette

⇨ We don't really have a fin normal...what to do?
­ The surface's normal is the fin's tangent

fin=max 0,2∣sin v ,nsurface∣−1

fin=max 0,2∣cos v ,nfin∣−1

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Shells and Fins

⇨ Alpha blended fins

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Lighting Shells and Fins

⇨ Use the surface normal as the direction of the
hair

­ p
d
 and p

s
 are diffuse and specular exponents

­ Similar to Goldman's fakefur lighting model

⇨ A little trig-identity love gets us:

k=kd sin nsurface , l pdks sin nsurface ,hps

k = kd 1−cos2
nsurface , l 

pd /2
ks 1−cos2

nsurface ,h
ps/2

= kd 1−nsurface⋅l
2 

pd /2
ks 1−nsurface⋅h 

2
ps/2

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Lighting Shells and Fins

⇨ No shadowing happens!
­ Fur near the skin is occluded by the fur above it
­ Add a shadowing term to falloff to a minimum value

linearly with the distance from the outermost shell

­ d is the current shell distance
­ d = 0 is the shell closest to the skin

­ d
max

 is the total number of shells

­ s
min

 is the minimum amount of light reaching the bottom layer

s=
d 1−smin

dmax

smin

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

References

Sheppard, G. Real-Time Rendering of Fur. Honors Thesis, Univ. of Sheffield.
2004.
http://www.gamasutra.com/education/theses/20051028/sheppard_01.shtml

Thorough overview of the various real-time fur methods.

Tariq, S. Fur (using Shells and Fins). Nvidia White Paper, Number WP-03021-
001_v01. February 2007.
http://developer.download.nvidia.com/whitepapers/2007/SDK10/FurShellsAndFins.pdf

This article focuses on optimizing shells-and-fins using Shader Model 4
features that are currently only supported in OpenGL 3.x.

Kajiya, J. T. and Kay, T. L. 1989. Rendering fur with three dimensional textures.
SIGGRAPH Comput. Graph. 23, 3 (Jul. 1989), 271-280.
http://www.icg.tu-graz.ac.at/courses/lv710.087/kajiyahair.pdf

Lake, A. and Kuah, K.. Real-Time Fur Rendering For Short Haired Creatures.
2006. http://softwarecommunity.intel.com/articles/eng/2597.htm

Morris, N. CS6610 Final Project. December 2005.
http://www.cs.utah.edu/classes/cs5610/projects-2005/morris/

http://www.gamasutra.com/education/theses/20051028/sheppard_01.shtml
http://developer.download.nvidia.com/whitepapers/2007/SDK10/FurShellsAndFins.pdf
http://www.icg.tu-graz.ac.at/courses/lv710.087/kajiyahair.pdf
http://softwarecommunity.intel.com/articles/eng/2597.htm
http://www.cs.utah.edu/classes/cs5610/projects-2005/morris/

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Next week...

⇨ Quiz #3
⇨ Non-photorealistic rendering
­ Cel (toon) shading
­ Silhouette edge rendering
­ Technical illustration

⇨ Begin post-processing / image space effects

© Copyright Ian D. Romanick 2009, 2010

10-November-2010

Legal Statement

This work represents the view of the authors and does not necessarily
represent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

