
© Copyright Ian D. Romanick 2010

6-October-2010

VGP352 – Week 1

⇨ Agenda:
 Course Intro
 Reading technical papers
 Curves
 Curved surfaces
 Per-fragment lighting revisited

 Phong Shading
 Surface-space

 Bump mapping
 Basic usage
 Bumpmap storage

© Copyright Ian D. Romanick 2010

6-October-2010

What should you already know?

⇨ C++ and object oriented programming
 For most assignments you will need to implement

classes or portions of classes that conform to specific
interfaces

⇨ Graphics terminology and concepts
 Polygon, pixel, texture, infinite light, point light, spot

light, etc.

⇨ Linear algebra and vector math
 Matrix arithmetic

© Copyright Ian D. Romanick 2010

6-October-2010

What should you already know?

⇨ Material from VGP351:
 Using OpenGL

 Setting up shaders
 Getting data in
 etc.

 Transformations
 3D space transformations
 Projections

 Lighting and shading
 Texture mapping

© Copyright Ian D. Romanick 2010

6-October-2010

What will you learn?

⇨ Advanced lighting models
 BRDFs
 Fur and hair rendering
 “Toon” and other non-photorealistic rendering

© Copyright Ian D. Romanick 2010

6-October-2010

How will you be graded?

⇨ Four bi-weekly quizzes
 These are listed on the syllabus

⇨ One final exam
⇨ Three programming projects

 The first will be pretty small...perhaps small enough to
complete in class

 The remaining two projects will be larger

⇨ One in-class presentation

© Copyright Ian D. Romanick 2010

6-October-2010

How will you be graded?

⇨ Keep in mind:
 There is a lot more reading than in VGP351

 More readings from the textbook
 Readings from academic papers

 There is more programming than in VGP351

© Copyright Ian D. Romanick 2010

6-October-2010

How will programs be graded?

⇨ Does the program produce the correct output?
⇨ Are appropriate algorithms and data-structures

used?
⇨ Is the code readable, clear, and properly

documented?

© Copyright Ian D. Romanick 2010

6-October-2010

How will the presentation be graded?

⇨ During the term, several papers will be assigned
to be read

 Select and present one of the assigned readings to
the class

 Material from some papers may appear on bi-weekly
quizzes

© Copyright Ian D. Romanick 2010

6-October-2010

Class Web Site

⇨ Syllabus, assignments, and base code:
http://people.freedesktop.org/~idr/2010Q4-VGP352/

http://people.freedesktop.org/~idr/2010Q4-VGP352/

© Copyright Ian D. Romanick 2010

6-October-2010

Reading Technical Papers

⇨ Why read technical papers?

© Copyright Ian D. Romanick 2010

6-October-2010

Reading Technical Papers

⇨ Why read technical papers?
 Almost every major advance in gaming graphics can

be traced to a SIGGRAPH paper from 1 to 10 years
before

 At publication many algorithms are not yet usable
 Hardware isn't quite fast enough / flexible enough
 Algorithm makes simplifying assumptions that prevent

general use

⇨ Reading papers effectively is a skill

© Copyright Ian D. Romanick 2010

6-October-2010

Reading Technical Papers

⇨ Read a paper in 3 passes:
 1st pass: the 10 minute overview

 Read the title, abstract, and introduction
 Read the section and subsection headings
 Read the conclusion
 Scan the references

© Copyright Ian D. Romanick 2010

6-October-2010

Reading Technical Papers

⇨ Read a paper in 3 passes:
 1st pass: the 10 minute overview

 Read the title, abstract, and introduction
 Read the section and subsection headings
 Read the conclusion
 Scan the references

 Answer the “five C's”
 Category: What type of paper is it?
 Context: What other work is it related to?
 Correctness: Is it based on valid / reasonable assumptions?
 Contribution: What are the main contributions?
 Clarity: Is it well written?

© Copyright Ian D. Romanick 2010

6-October-2010

Reading Technical Papers

⇨ Read a paper in 3 passes:
 2nd pass: an hour for details

 Read the whole paper
 Carefully examine diagrams, figures, graphs, etc.
 Skip or skim proofs and detailed equations

© Copyright Ian D. Romanick 2010

6-October-2010

Reading Technical Papers

⇨ Read a paper in 3 passes:
 3rd pass: re-implement the paper

 Recreate the work
 Identify and challenge every assumption in the paper

 Helps identify both the innovations and failings of the paper

 Compare you recreation with the original
 Make notes of ideas for future work

© Copyright Ian D. Romanick 2010

6-October-2010

References

Keshav, S. 2007. How to read a paper. SIGCOMM Computer
Communications Review. 37, 3 (Jul. 2007), 83-84.
http://www.sigcomm.org/ccr/drupal/files/p83-keshavA.pdf

http://www.sigcomm.org/ccr/drupal/files/p83-keshavA.pdf

© Copyright Ian D. Romanick 2010

6-October-2010

Camera Control

⇨ How can we move a virtual camera through a
series of artist selected positions?

t
0

t
1

t
2

© Copyright Ian D. Romanick 2010

6-October-2010

Camera Control

⇨ How can we move a virtual camera through a
series of artist selected positions?

 Linearly interpolate between the positions

 Positionally continuous (aka C0 continuity)

pt = p0t p1−p0

= 1−t p0t p1

t
0

t
1

t
2

© Copyright Ian D. Romanick 2010

6-October-2010

Camera Control

⇨ What's wrong with C0?

t
0

t
1

t
2

© Copyright Ian D. Romanick 2010

6-October-2010

Camera Control

⇨ What's wrong with C0?
 Jarring change in direction at control points
 Jarring change in speed at control points

 Direction change or speed change = velocity change

t
0

t
1

t
2

© Copyright Ian D. Romanick 2010

6-October-2010

Continuity

⇨ What does it mean?
 “f is C0” → The function f is continuous
 “f is C1” → The function f' is continuous
 “f is C2” → The function f'' is continuous
 …
 “f is C” → All derivatives of f are continuous

© Copyright Ian D. Romanick 2010

6-October-2010

Camera Control

⇨ How can we fix this?

t
0

t
1

t
2

© Copyright Ian D. Romanick 2010

6-October-2010

Camera Control

⇨ How can we fix this?
 Add one more control point for each segment

 Each segment has p
0
, p

1
, and p

2

 Do more linear interpolation
 d = lerp(p

0
, p

1
, t)

 e = lerp(p
1
, p

2
, t)

 p(t) = lerp(d, e, t)

p
0

p
2

q
2

p
1

q
0

q
1

© Copyright Ian D. Romanick 2010

6-October-2010

Camera Control

⇨ p(0.3) = lerp(lerp(p
0
, p

1
, 0.3), lerp(p

1
, p

2
, 0.3), 0.3)

© Copyright Ian D. Romanick 2010

6-October-2010

Camera Control

⇨ p(0.3) = lerp(lerp(p
0
, p

1
, 0.3), lerp(p

1
, p

2
, 0.3), 0.3)

© Copyright Ian D. Romanick 2010

6-October-2010

Camera Control

⇨ p(0.3) = lerp(lerp(p
0
, p

1
, 0.3), lerp(p

1
, p

2
, 0.3), 0.3)

© Copyright Ian D. Romanick 2010

6-October-2010

Bézier Curve

⇨ This works out to:

⇨ More formally:

 Curve with x control points is degree x-1
 n is the degree of the polynomial that defines the curve
 Our curve with 3 control points is degree 2

 The initial control points are p
i

0 but are written p
i

⇨ Pronounced beh-zee-eh

pt =1−t 2p02 t 1−t p1t2p2

pi
k
t =1−t pi

k−1
t t pi1

k−1
t ,{k = 1..n

i = 0 ..n−k

© Copyright Ian D. Romanick 2010

6-October-2010

Bézier Curve

⇨ This works out to:

⇨ More formally:

 Curve with x control points is degree x-1
 n is the degree of the polynomial that defines the curve
 Our curve with 3 control points is degree 2

 The initial control points are p
i

0 but are written p
i

pt =1−t 2p02 t 1−t p1t2p2

pi
k
t =1−t pi

k−1
t t pi1

k−1
t ,{k = 1..n

i = 0 ..n−k

© Copyright Ian D. Romanick 2010

6-October-2010

Bézier Curve

⇨ Note:
 Curve lies within the convex hull of the control points

 Curve only passes through p
0
 and p

n

© Copyright Ian D. Romanick 2010

6-October-2010

Bézier Curve

⇨ Repeated interpolation is cumbersome
 Also inefficient for large n

⇨ Can we do better?

© Copyright Ian D. Romanick 2010

6-October-2010

Bézier Curve

⇨ Repeated interpolation is cumbersome
 Also inefficient for large n

⇨ Can we do better?
 Yes!
 We can use algebra instead of interpolation

© Copyright Ian D. Romanick 2010

6-October-2010

Bézier Basis Functions

⇨ Rewrite a weighted sum of control points:

 B
i

n is the Bernstein polynomial or Bézier basis

function
 Note:

pt =∑i=0

n
Bi

n
t pi

Bi
n t = ni t

i 1−t n−i

=
n!

i!n−i!
t i 1−t n−i

t∈[0,1]Bi
n t ∈[0,1]

∑i=0

n
Bi

n
t =1

© Copyright Ian D. Romanick 2010

6-October-2010

Bézier Basis Functions

© Copyright Ian D. Romanick 2010

6-October-2010

Bézier Curve

⇨ Usually unnecessary to go higher than n=3
 Why?

 What can a cubic polynomial do that a quadratic cannot?

© Copyright Ian D. Romanick 2010

6-October-2010

Bézier Curve

⇨ Usually unnecessary to go higher than n=3
 Why?

 What can a cubic polynomial do that a quadratic cannot?

 Cubic polynomials are the lowest degree whose
derivative can change direction

 Multiple cubic Bézier curves can be combined to
approximate most shapes

 Evaluation cost increases as n increases

© Copyright Ian D. Romanick 2010

6-October-2010

Piecewise Bézier Curves

⇨ Curve only passes through p
0
 and p

n

 For camera control, we need to hit other definable
points

⇨ Define multiple curves
 Control points p

i
, q

i
, r

i
, etc.

 Set p
n
 = q

0

 This is called a joint

© Copyright Ian D. Romanick 2010

6-October-2010

Piecewise Bézier Curves

p
0

p
1

p
2

q
0

q
1 q

2

© Copyright Ian D. Romanick 2010

6-October-2010

Piecewise Bézier Curves

Still only C0!

p
0

p
1

p
2

q
0

q
1 q

2

© Copyright Ian D. Romanick 2010

6-October-2010

Piecewise Bézier Curves

⇨ The piecewise function must be differentiable at
the joint to be C1

⇨ What are the derivatives of p and q at the joint?

p
0

p
1

p
2

q
0

q
1 q

2

© Copyright Ian D. Romanick 2010

6-October-2010

Piecewise Bézier Curves

⇨ The piecewise function must be differentiable at
the joint to be C1

⇨ What are the derivatives of p and q at the joint?
 p'(1) = q'(0)

p
0

p
1

p
2

q
0

q
1 q

2

© Copyright Ian D. Romanick 2010

6-October-2010

Piecewise Bézier Curves

⇨ Generally, what is the value of the derivative of f
at x?

p
0

p
1

p
2

q
0

q
1 q

2

© Copyright Ian D. Romanick 2010

6-October-2010

Piecewise Bézier Curves

⇨ Generally, what is the value of the derivative of f
at x?

 The slope of a line tangent to f at x

p
0

p
1

p
2

q
0

q
1 q

2

© Copyright Ian D. Romanick 2010

6-October-2010

Piecewise Bézier Curves

⇨ What line is tangent to p at p
2
?

p
0

p
1

p
2

q
0

q
1 q

2

© Copyright Ian D. Romanick 2010

6-October-2010

Piecewise Bézier Curves

⇨ What line is tangent to p at p
2
?

p
0

p
1

p
2

q
0

q
1 q

2

p1 p2

© Copyright Ian D. Romanick 2010

6-October-2010

Piecewise Bézier Curves

⇨ How can we achieve C1?

p
0

p
1

p
2

q
0

q
1 q

2

© Copyright Ian D. Romanick 2010

6-October-2010

Piecewise Bézier Curves

⇨ How can we achieve C1?
 Move p

1
 and / or q

1
 so that and are parallel

p
0

p
1

p
2

q
0

q
1 q

2

p1 p2 q0q1

© Copyright Ian D. Romanick 2010

6-October-2010

Piecewise Bézier Curves

⇨ How can we achieve C1?
 Move p

1
 and / or q

1
 so that and are parallel

 This can dramatically change the curves

p1 p2 q0q1

p
0

p
1

p
2

q
0

q
1

q
2

© Copyright Ian D. Romanick 2010

6-October-2010

Piecewise Bézier Curves

⇨ If |m
1
| ≠ |m

2
| there will be a speed change at the

joint
 This is not C1, but it's better than C0

 Sometimes G1 for geometrical continuity

© Copyright Ian D. Romanick 2010

6-October-2010

Derivative of a Bézier Curve

⇨ Derivative using the sum rule and regrouping:

 Exercise for the reader to confirm:

 Result is a Bézier curve of one lower degree

d
dt

pt =n∑i=0

n−1
Bi

n−1
t pi1−pi

d
dt

p0 = p1−p0

d
dt

p1 = pn−pn−1

© Copyright Ian D. Romanick 2010

6-October-2010

Curved Surfaces

⇨ Start with the same interpolation games
 First extend from one parameter, t, to two parameters

〈u, v〉

 Use four control points, p
00

, p
01

, p
10

, p
11

, instead of two

 Interpolate between adjacent pairs:

 Also known as bilinear interpolation

e = 1−up00v p01

f = 1−up10v p11

p u , v = 1−vev f
= 1−u1−v p00u 1−v p011−u v p10uv p11

© Copyright Ian D. Romanick 2010

6-October-2010

Curved Surfaces

⇨ Extend to a curved surface in the same way as
extending a line to a curve:

 Add control points
 For an n×m degree patch, there are (n+1)(m+1) control

points
 Usually n=m

 Recursively interpolate between the control points
 Or use Bernstein form

© Copyright Ian D. Romanick 2010

6-October-2010

Bézier Patches

⇨ Bernstein form:

 As with Bézier curves:
 Surface lies within convex hull of control points
 And:

 Second summation is just a Bézier curve!

pu , v =∑i=0

m
Bi

m
u∑ j=0

n
B j

n
v pi , j

u , v ∈[0,1]×[0,1]Bi
m
uB j

n
v ∈[0,1]

∑i=0

m

∑ j=0

n
Bi

m
uB j

n
v =1

© Copyright Ian D. Romanick 2010

6-October-2010

Bézier Patches

⇨ Bernstein form:

 As with Bézier curves:
 Surface lies within convex hull of control points
 And:

 Second summation is just a Bézier curve!

pu , v =∑i=0

m
Bi

m
u∑ j=0

n
B j

n
v pi , j

u , v ∈[0,1]×[0,1]Bi
m
uB j

n
v ∈[0,1]

∑i=0

m

∑ j=0

n
Bi

m
uB j

n
v =1

© Copyright Ian D. Romanick 2010

6-October-2010

Derivative of a Bézier Patch

⇨ Similar to Bézier curves:
∂p u ,v

∂u
= m∑ j=0

n

∑i=0

m−1
Bi

m−1uB j
n v[pi1, j−pi , j]

∂p u ,v
∂ v

= n∑i=0

m

∑ j=0

n−1
Bi

muB j
n−1v [pi , j1−pi , j]

© Copyright Ian D. Romanick 2010

6-October-2010

Normals of a Bézier Patch

⇨ How do we calculate the normal?
 What we really want is the normal of the plane

tangent to the surface

© Copyright Ian D. Romanick 2010

6-October-2010

Normals of a Bézier Patch

⇨ How do we calculate the normal?
 What we really want is the normal of the plane

tangent to the surface
 The partial derivatives give two vectors that lie in that

plane... just take the cross product!

n u ,v =
∂pu ,v

∂u
×
∂pu ,v

∂ v

© Copyright Ian D. Romanick 2010

6-October-2010

Phong Shading Recap

⇨ Phong shading... aka per-fragment lighting
 Calculate lighting parameters per-vertex
 Interpolate calculated values
 Calculate lighting per-fragment based on interpolated

parameter values

© Copyright Ian D. Romanick 2010

6-October-2010

Phong Shading Recap

attribute vec3 normal;
uniform mat3 normal_xform;
uniform mat4 vertex_xform;
uniform mat4 mvp;

varying vec3 normal_es;
varying vec3 pos_es;

void main(void)
{
 gl_Position = mvp * gl_Vertex;

 normal_es = normal_xform * normal;
 pos_es = vertex_xform * gl_Vertex;
}

© Copyright Ian D. Romanick 2010

6-October-2010

Phong Shading Recap

uniform vec3 light_pos_es;
uniform vec4 diff_color;
varying vec3 normal_es;
varying vec3 pos_es;
const vec3 eye_es = vec3(0);

void main(void)
{
 vec3 l = normalize(light_pos_es – pos_es);
 vec3 v = normalize(eye_es pos_es);
 vec3 h = normalize(l + v);
 float n_dot_l = dot(normal_es, l);
 vec4 diff = diff_color * n_dot_l;
 float spec = pow(dot(n, h), 16.0);

 gl_FragColor = step(0.0, n_dot_l) *
 vec4(diff.xyz + vec3(spec), 1.0);
}

© Copyright Ian D. Romanick 2010

6-October-2010

Surface-Space

⇨ From the point of view of the surface, what is the
normal vector?

 We'll call this surface-space

© Copyright Ian D. Romanick 2010

6-October-2010

Surface-Space

⇨ From the point of view of the surface, what is the
normal vector?

 We'll call this surface-space

 Assuming the surface is flat, n
surf

 = (0, 0, 1)

© Copyright Ian D. Romanick 2010

6-October-2010

Surface-Space

⇨ If we know n
world

, can we create transformation

that will generate n
surf

?

 Not uniquely
 An orthonormal basis requires three orthogonal, normalized

vectors, but we only have one
 If we have two we can generate the third

 This is the same reason we need the “up” vector to create
the camera look-at transform

 If only we had another vector in plane...

© Copyright Ian D. Romanick 2010

6-October-2010

Surface-Space

⇨ Create a new vector, and call it the tangent
 Either partial derivative of a Bézier patch can be used

for t
surf

 Usually ∂p/∂u is used

 Knowing n
surf

 and t
surf

 is enough to create an

orthonormal basis
 This basis can transform any vector to surface-space

from object-space
 n

obj
 is an obvious choice

 For lighting, v and l need to be in the same space as n

⇨ Because the tangent vector is used, surface-
space is sometimes called tangent-space

© Copyright Ian D. Romanick 2010

6-October-2010

Surface-Space

varying vec3 light_ss;
varying vec3 eye_ss;
attribute vec3 tangent;
attribute vec3 normal;

void main(void)
{
 gl_Position = mvp * gl_Vertex;

 vec3 tangent_es = normal_xform * tangent;
 vec3 normal_es = normal_xform * normal;
 vec3 bitangent_es = cross(normal_es, tangent_es);
 mat3 tbn = mat3(tangent_es, bitangent_es, normal_es);

 vec3 pos_es = vec3(vertex_xform * gl_Vertex);
 vec3 light_es = light_pos_es pos_es;

 light_ss = normalize(light_es * tbn);
 eye_ss = normalize(pos_es * tbn);
}

© Copyright Ian D. Romanick 2010

6-October-2010

Surface-Space

varying vec3 light_ss;
varying vec3 eye_ss;
attribute vec3 tangent;
attribute vec3 normal;

void main(void)
{
 gl_Position = mvp * gl_Vertex;

 vec3 tangent_es = normal_xform * tangent;
 vec3 normal_es = normal_xform * normal;
 vec3 bitangent_es = cross(normal_es, tangent_es);
 mat3 tbn = mat3(tangent_es, bitangent_es, normal_es);

 vec3 pos_es = vec3(vertex_xform * gl_Vertex);
 vec3 light_es = light_pos_es pos_es;

 light_ss = normalize(light_es * tbn);
 eye_ss = normalize(pos_ss * tbn);
}

This actually calculates M
s

T

© Copyright Ian D. Romanick 2010

6-October-2010

Surface-Space

varying vec3 light_ss;
varying vec3 eye_ss;
attribute vec3 tangent;
attribute vec3 normal;

void main(void)
{
 gl_Position = mvp * gl_Vertex;

 vec3 tangent_es = normal_xform * tangent;
 vec3 normal_es = normal_xform * normal;
 vec3 bitangent_es = cross(normal_es, tangent_es);
 mat3 tbn = mat3(tangent_es, bitangent_es, normal_es);

 vec3 pos_es = vec3(vertex_xform * gl_Vertex);
 vec3 light_es = light_pos_es pos_es;

 light_ss = normalize(light_es * tbn);
 eye_ss = normalize(pos_ss * tbn);
} Remember: Mv = vMT

This actually calculates M
s

T

© Copyright Ian D. Romanick 2010

6-October-2010

Surface-Space

varying vec3 light_ss;
varying vec3 eye_ss;
uniform vec4 diff_color;

void main(void)
{
 vec3 l = normalize(light_ss);
 vec3 v = normalize(eye_ss);
 vec3 h = normalize(l + v);
 float n_dot_l = l.z;
 vec4 diff = diff_color * n_dot_l;
 float spec = pow(h.z, 16.0);

 gl_FragColor = step(0.0, n_dot_l) *
 vec4(diff.xyz + vec3(spec), 1.0);
}

© Copyright Ian D. Romanick 2010

6-October-2010

Surface-Space

varying vec3 light_ss;
varying vec3 eye_ss;
uniform vec4 diff_color;

void main(void)
{
 vec3 l = normalize(light_ss);
 vec3 v = normalize(eye_ss);
 vec3 h = normalize(l + v);
 float n_dot_l = l.z;
 vec4 diff = diff_color * n_dot_l;
 float spec = pow(h.z, 16.0);

 gl_FragColor = step(0.0, n_dot_l) *
 vec4(diff.xyz + vec3(spec), 1.0);
}

Remember: n is (0, 0, 1)!

© Copyright Ian D. Romanick 2010

6-October-2010

Surface-Space

⇨ What is b?
 In the calculation: b = n × t
 Correctly, this is the bi-tangent

 Many places incorrectly call it the bi-normal
 Either way, we'll just call it b

 Generally easier and more efficient to compute this in
a shader than supply it as an input

 We cannot just use ∂p/∂v from from our surface evaluation
because the two partial derivatives may not be orthogonal to
each other!

© Copyright Ian D. Romanick 2010

6-October-2010

Surface-Space

⇨ What does this math headache gain us?
 Just a trivial fragment shader optimization so far

 Seems hardly worth it

 What else?

© Copyright Ian D. Romanick 2010

6-October-2010

Bump Mapping

⇨ What if the surface isn't really flat or smoothly
curved?

 Just like few real surfaces have truly uniform color,
few real surfaces have uniform normals

 Use the same solution!
 Store colors in an image → store normals in an image

© Copyright Ian D. Romanick 2010

6-October-2010

Normal Map Storage

⇨ Store the X, Y, and Z values of the surface-
space normals in the R, G, and B components

 Since Z tends to be close to 1.0, these images tend to
look very blue

Image from http://www.filterforge.com/filters/243-normal.html

http://www.filterforge.com/filters/243-normal.html

© Copyright Ian D. Romanick 2010

6-October-2010

Normal Map Storage

⇨ What is the range of colors in a texture?

© Copyright Ian D. Romanick 2010

6-October-2010

Normal Map Storage

⇨ What is the range of colors in a texture?
 [0.0, 1.0]
 We have to convert these to the [-1, 1] range desired

for normal directions
 Just convert X and Y... Z must be > 0, so just leave it

© Copyright Ian D. Romanick 2010

6-October-2010

Normal Map Storage

⇨ We don't even need Z
 Z must always be > 0.0
 Derive it from X and Y:

© Copyright Ian D. Romanick 2010

6-October-2010

Normal Map Storage

⇨ We don't even need Z
 Z must always be > 0.0
 Derive it from X and Y:

 x2
 y2

z2
=1.0

x2 y2z2=1.0
z2=1.0−x2− y2

z=1.0−x2
− y2

© Copyright Ian D. Romanick 2010

6-October-2010

Normal Map Storage

⇨ 2-component textures can be achieved in a
couple ways:

 Use GL_LUMINANCE_ALPHA
 Some hardware doesn't really support this, so it will silently

convert it to RGBA...making it bigger

 Use GL_RG
 Requires GL_ARB_texture_rg or OpenGL 3.0

 Use GL_COMPRESSED_RED_GREEN_RGTC2_EXT
 Requires GL_ARB_texture_compression_rgtc,

GL_EXT_texture_compression_rgtc, or OpenGL 3.0

 May add undesired compression artifacts

© Copyright Ian D. Romanick 2010

6-October-2010

References

Lengyel, Eric. “Computing Tangent Space Basis Vectors for an
Arbitrary Mesh”. Terathon Software 3D Graphics Library, 2001.
http://www.terathon.com/code/tangent.html

Normal map photography tutorial:

http://www.zarria.net/nrmphoto/nrmphoto.html

OpenGL extension specs:

http://www.opengl.org/registry/specs/ARB/texture_rg.txt

http://www.opengl.org/registry/specs/ARB/texture_compression_rgtc.txt

http://www.terathon.com/code/tangent.html
http://www.zarria.net/nrmphoto/nrmphoto.html
http://www.opengl.org/registry/specs/ARB/texture_rg.txt
http://www.opengl.org/registry/specs/ARB/texture_compression_rgtc.txt

© Copyright Ian D. Romanick 2010

6-October-2010

Next week...

⇨ Render-to-texture
⇨ Environment mapping

 Rendering to env maps

⇨ Improving the reflection model
 Using env maps as better lights
 Fresnel reflection

⇨ Read:
Michael Toksvig. “Mipmapping Normal Maps.”

http://developer.nvidia.com/object/mipmapping_normal_maps.html

Real-Time Rendering 3rd Edition, chapter 13.1 and 13.2.

http://developer.nvidia.com/object/mipmapping_normal_maps.html

© Copyright Ian D. Romanick 2010

6-October-2010

Legal Statement

This work represents the view of the authors and does not necessarily
represent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80

