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VGP352 – Week 8

⇨ Agenda:
­ Post-processing effects

­ Filter kernels
­ Separable filters
­ Depth of field
­ HDR
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Filter Kernels

⇨ Can represent our filter operation as a sum of 
products over a region of pixels

­ Each pixel is multiplied by a factor
­ Resulting products are accumulated

⇨ Commonly represented as an n×m matrix
­ This matrix is called the filter kernel
­ m is either 1 or is equal to n
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Filter Kernels

⇨ Uniform blur over 3x3 area:
­ Larger kernel size results in 

more blurriness

1
9 [

1 1 1
1 1 1
1 1 1]
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Filter Kernels – Edge Detection

⇨ Edge detection
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Filter Kernels – Edge Detection

⇨ Edge detection
­ Take the difference of each pixel 

and its left neighbor

px , y −p x−1, y 
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Filter Kernels – Edge Detection

⇨ Edge detection
­ Take the difference of each pixel 

and its left neighbor

­ Take the difference of each pixel 
and its right neighbor

p x , y −p x−1, y 

p x , y−p x1, y
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Filter Kernels – Edge Detection

⇨ Edge detection
­ Take the difference of each pixel 

and its left neighbor

­ Take the difference of each pixel 
and its right neighbor

­ Add the two together

p x , y −p x−1, y 

p x , y−p x1, y

2 p x , y−p x−1, y−p x1, y 
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Filter Kernels – Edge Detection

⇨ Rewrite as a kernel

[
0 0 0
−1 2 −1
0 0 0 ]
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Filter Kernels – Edge Detection

⇨ Rewrite as a kernel

⇨ Repeat in Y direction

[
0 0 0
−1 2 −1
0 0 0 ]

[
0 −1 0
−1 4 −1
0 −1 0 ]
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Filter Kernels – Edge Detection

⇨ Rewrite as a kernel

⇨ Repeat in Y direction

⇨ Repeat on diagonals

[
0 0 0
−1 2 −1
0 0 0 ]

[
0 −1 0
−1 4 −1
0 −1 0 ]

[
−1 −1 −1
−1 8 −1
−1 −1 −1]
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Sobel Edge Detection

⇨ Uses two filter kernels
­ One in the Y direction

­ One in the X direction
F x=[

1 0 −1
2 0 −2
1 0 −1]

F y=[
1 2 1
0 0 0
−1 −2 −1]
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Sobel Edge Detection

⇨ Apply each filter kernel to the image

­ G
x
 and G

y
 are the gradients in the x and y directions

­ The combined magnitude of these gradients can be 
used to detect edges

Gx = F x∗A
G y = F y∗A

G=G x
2G y

2
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Sobel Edge Detection

Images from http://en.wikipedia.org/wiki/Sobel_operator

http://en.wikipedia.org/wiki/Sobel_operator
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Filter Kernels

⇨ Implement this easily on a GPU
­ Supply filter kernel as uniforms
­ Perform n2 texture reads
­ Apply kernel and write result
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Filter Kernels

⇨ Implement this easily on a GPU
­ Supply filter kernel as uniforms
­ Perform n2 texture reads
­ Apply kernel and write result

⇨ Perform n2 texture reads?!?
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Filter Kernels

⇨ Implement this easily on a GPU
­ Supply filter kernel as uniforms
­ Perform n2 texture reads
­ Apply kernel and write result

⇨ Perform n2 texture reads?!?
­ n larger than 4 or 5 won't work on most hardware
­ Since the filter is a sum of products, it could be done 

in multiple passes
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Filter Kernels

⇨ Implement this easily on a GPU
­ Supply filter kernel as uniforms
­ Perform n2 texture reads
­ Apply kernel and write result

⇨ Perform n2 texture reads?!?
­ n larger than 4 or 5 won't work on most hardware
­ Since the filter is a sum of products, it could be done 

in multiple passes
­ Or maybe there's a different way altogether...
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Separable Filter Kernels

⇨ Some 2D kernels can be re-written as the 
product of 2 1D kernels

­ These kernels are called separable
­ Applying each 1D kernel requires n texture reads per 

pixel, doing both requires 2n
­ 2n ≪ n2
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Separable Filter Kernels

⇨ 2D kernel is calculated as the outer-product of  
the individual 1D kernels

A=aT b=[
a0b0 ⋯ a0 bn

⋮ ⋮
an b0 ⋯ an bn

]
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Separable Filter Kernels

⇨ The 2D Gaussian filter is 
the classic separable 
filter
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Separable Filter Kernels

⇨ The 2D Gaussian filter is 
the classic separable 
filter

­ Product of a Gaussian 
along the X-axis
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Separable Filter Kernels

⇨ The 2D Gaussian filter is 
the classic separable 
filter

­ Product of a Gaussian 
along the X-axis

­ ...and a Gaussian along 
the Y-axis
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Separable Filter Kernels

⇨ Implementing on a GPU:
­ Use first 1D filter on source image to window
­ Configure blending for source × destination

glBlendFunc(GL_DST_COLOR, GL_ZERO);

­ Use second 1D filter on source image to window
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Separable Filter Kernels

⇨ Implementing on a GPU:
­ Use first 1D filter on source image to window
­ Configure blending for source × destination

glBlendFunc(GL_DST_COLOR, GL_ZERO);

­ Use second 1D filter on source image to window

⇨ Caveats:
­ Precision can be a problem in intermediate steps
­ May have to use floating-point output
­ Can also use 10-bit or 16-bit per component outputs 

as well
­ Choice ultimately depends on what the hardware supports
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Depth-of-field

⇨ What is depth of field?
“...the depth of field (DOF) is the portion of a scene 
that appears acceptably sharp in the image.1”

1 http://en.wikipedia.org/wiki/Depth_of_field
Images also from http://en.wikipedia.org/wiki/Depth_of_field

http://en.wikipedia.org/wiki/Depth_of_field
http://en.wikipedia.org/wiki/Depth_of_field
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Depth-of-field

⇨ Why is DOF important?

Images from http://en.wikipedia.org/wiki/Depth_of_field

http://en.wikipedia.org/wiki/Depth_of_field
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Depth-of-field

⇨ Why is DOF important?
­ Draws viewer's attention
­ Gives added information about spatial relationships
­ etc.

Images from http://en.wikipedia.org/wiki/Depth_of_field

http://en.wikipedia.org/wiki/Depth_of_field


© Copyright Ian D. Romanick 2009, 2010

2-March-2010

Depth-of-field

⇨ Basic optics:
­ A point of light focused through a 

lens becomes a point on the 
object plane
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Depth-of-field

⇨ Basic optics:
­ A point of light focused through a 

lens becomes a point on the 
object plane

­ A point farther than the focal 
distance becomes a blurry spot 
on the object plane
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Depth-of-field

⇨ Basic optics:
­ A point of light focused through a 

lens becomes a point on the 
object plane

­ A point farther than the focal 
distance becomes a blurry spot 
on the object plane

­ A point closer than the focal 
distance becomes a blurry spot 
on the object plane

⇨ These blurry spots are called 
circles of confusion (CoC 
hereafter)
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Depth-of-field

⇨ In most real-time graphics, there is no depth-of-
field

­ Everything is perfectly in focus all the time
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Depth-of-field

⇨ In most real-time graphics, there is no depth-of-
field

­ Everything is perfectly in focus all the time
­ Most of the time this is okay

­ The player may want to focus on foreground and background 
objects in rapid succession.  Without eye tracking, the only 
way this works is to have everything in focus.
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Depth-of-field

⇨ In most real-time graphics, there is no depth-of-
field

­ Everything is perfectly in focus all the time
­ Most of the time this is okay

­ The player may want to focus on foreground and background 
objects in rapid succession.  Without eye tracking, the only 
way this works is to have everything in focus.

­ Under some circumstances, DOF can be a very 
powerful tool

­ Non-interactive sequences
­ Special effects

­ Very effective use in the game Borderlands
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Depth-of-field

⇨ Straight-forward GPU implementation:
­ Render scene color and depth information to off-

screen targets
­ Post-process:

­ At each pixel determine CoC size based on depth value
­ Blur pixels within circle of confusion

­ To prevent in-focus data from bleeding into out-of-focus data, do not 
use in-focus pixels that are closer than the center pixel
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Depth-of-field

⇨ Problem with this approach?
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Depth-of-field

⇨ Problem with this approach?
­ Fixed number of samples within CoC

­ Oversample for small CoC
­ Undersample for large CoC

­ Could improve quality with multiple passes, but 
performance would suffer
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Depth-of-field

⇨ Simplified GPU implementation:
­ Render scene color and depth information to off-

screen targets
­ Post-process:

­ Down-sample image and Gaussian blur down-sampled 
image

­ Reduced size and filter kernel size are selected to produce maximum 
desired CoC size

­ Linearly blend between original image and blurred image 
based on per-pixel CoC size
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Depth-of-field

⇨ Simplified GPU implementation:
­ Render scene color and depth information to off-

screen targets
­ Post-process:

­ Down-sample image and Gaussian blur down-sampled 
image

­ Reduced size and filter kernel size are selected to produce maximum 
desired CoC size

­ Linearly blend between original image and blurred image 
based on per-pixel CoC size

⇨ Problems with this approach?
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Depth-of-field

⇨ Simplified GPU implementation:
­ Render scene color and depth information to off-

screen targets
­ Post-process:

­ Down-sample image and Gaussian blur down-sampled 
image

­ Reduced size and filter kernel size are selected to produce maximum 
desired CoC size

­ Linearly blend between original image and blurred image 
based on per-pixel CoC size

⇨ Problems with this approach?
­ No way to prevent in-focus data from bleeding into 

out-of-focus data



© Copyright Ian D. Romanick 2009, 2010

2-March-2010

References

J. D. Mulder, R. van Liere. Fast Perception-Based Depth of Field 
Rendering, In Proceedings of the ACM Symposium on Virtual 
Reality Software and Technology (Seoul, Korea, October 22 - 25, 
2000). VRST '00. ACM, New York, NY, 129-133. 
http://homepages.cwi.nl/~mullie/Work/Pubs/publications.html

Guennadi Riguer, Natalya Tatarchuk, John Isidoro. Real-time Depth 
of Field Simulation, In ShaderX2, Wordware Publishing, Inc., 
October 25, 2003. 
http://developer.amd.com/documentation/reading/pages/ShaderX.aspx

M. Kass, A. Lefohn, J. Owens.  2006. Interactive Depth of Field 
Using Simulated Diffusion on a GPU.  Technical Memo #06-01, 
Pixar Animation Studios.  
http://graphics.pixar.com/library/DepthOfField/

http://homepages.cwi.nl/~mullie/Work/Pubs/publications.html
http://developer.amd.com/documentation/reading/pages/ShaderX.aspx
http://graphics.pixar.com/library/DepthOfField/


© Copyright Ian D. Romanick 2009, 2010

2-March-2010

High Dynamic Range

⇨ Until now, our rendering has had a contrast ratio 
of 256:1

­ As noted in [Green 2004]:
­ Bright things can be really bright
­ Dark things can be really dark
­ And the details can be seen in both
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High Dynamic Range

⇨ Several possible solutions depending on 
hardware support / performance:

­ Render multiple “exposures” and composite results
­ This is how HDR images are captured with a camera
­ Yuck!

­ Render to floating-point buffers
­ Best quality
­ Even fp16 buffers are large / expensive
­ Differing levels of hardware support (esp. on mobile devices)

­ Render to RGBe
­ Smaller / faster
­ Lower quality
­ Issues with blending / multipass
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Floating-Point Render Targets

⇨ Create drawing surface with a floating-point 
internal format

­ Surface is either a texture or a renderbuffer
­ GL_RGB32F, GL_RGBA32F, GL_RGB16F, and 

GL_RGBA16F are most common
­ Requires GL_ARB_texture_float (and 

GL_ARB_half_float_pixel for 16F formats) and 
GL_ARB_color_buffer_float or OpenGL 3.0
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Floating-Point Render Targets

⇨ Disable [0, 1] clamping of fragments
glClampColorARB(GLenum target, Glenum clamp);

­ target is one of GL_CLAMP_VERTEX_COLOR, 
GL_CLAMP_FRAGMENT_COLOR, or 
GL_CLAMP_READ_COLOR

­ clamp is one of GL_FIXED_ONLY, GL_TRUE, or 
GL_FALSE

­ OpenGL 3.x version drops ARB from name
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Floating-Point Render Targets

⇨ Common hardware limitations:
­ May not be supported at all!

­ Almost universal on desktop, not so much on mobile
­ Intel GMA950 in most netbooks lacks support

­ May not support blending to floating-point targets
­ RGBA32F blending not supported on Geforce6 and similar 

generation chips
­ May also be really slow

­ May not support all texture filtering modes
­ Some hardware can't do mipmap filtering from FP textures

­ Many DX9 era cards can't do any filtering on RGBA32F 
textures
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RGBe

⇨ Store R, G, and B mantissa values with a single 
exponent

­ Exponent store in alpha component
­ Trades precision for huge savings on storage

­ Keeps most of the useful range of FP32
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RGBe

⇨ Convert floating-point RGB in shader to RGBe:
vec4 rgb_to_rgbe(vec3 color)
{
    const float max_component =
        max(color.r, max(color.g, color.b));
    const float e = ceil(log(max_component));

    return vec4(color / exp(e),
                (e + 128.0) / 255.0);
}
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RGBe

⇨ Limitations / problems:
­ The log and exp calls in the shader aren't free

­ May be a problem for compute bound vs. bandwidth bound 
shaders

­ Blending is still possible, but it is rather painful
­ Can't store components with vastly different 

magnitudes
­ {10000, 0.1, 0.1 } becomes {10000, 0, 0}
­ Usually fine for color data because the final display can't 

reproduce that much range anyway
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Tone Mapping

⇨ Remap HDR rendered image to LDR displayable 
image

­ Display still limited to [0,1] with only 8-bit precision

⇨ Remap using Reinhard's tone reproduction 
operator in 5 steps:

­ Convert RGB image to luminance
­ Calculate log-average luminance

­ Used to calculate key value

­ Scale luminance by key value
­ Remap scaled luminance to [0, 1]
­ Scale RGB values by remapped luminance
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Tone Mapping

⇨ Standard luminance calculation:

­ If using RGBe, the color must be mapped back from 
RGBe to floating-point

l=[0.2125 0.7154 0.0721 ]
T
⋅C
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Tone Mapping

⇨ Image key:

⇨ Does this pixel averaging operation remind you 
of anything?

k=
1
n

e
∑all pixels

ln ∂l x , y 
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Tone Mapping

⇨ Image key:

⇨ Does this pixel averaging operation remind you 
of anything?

­ It's like calculating the lowest-level mipmap!
­ ...but with some other math and emitting HDR

k=
1
n

e
∑all pixels

ln ∂l x , y 
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Tone Mapping

⇨ Scaled luminance:

­ l
mid zone

 is the mid zone reference reflectance value

­ 0.18 is a “common” value... see references

⇨ Remapped luminance:

⇨ Final pass modulates l
final

 with original RGB

­ Output in plain old 8-bit RGB, naturally

lscaled=lx , y  lmid zone

k 

lfinal=
lscaled

1l scaled
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Tone Mapping

⇨ Can alternately map based on the dimmest 
value that should be full intensity

­ l
min white

 is the minimum HDR intensity that should be 

mapped to fully bright

lfinal=

lscaled 1 lscaled

lmin white


1lscaled
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Tone Mapping

⇨ Tone map operation is performed each frame
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Tone Mapping

⇨ Tone map operation is performed each frame
­ Ouch!
­ Common practice is to only recompute k every few 

frames
­ Once every half second is common
­ Has the realistic side-effect of not immediately responding to 

dramatic changes in scene brightness
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Bloom

⇨ Overly bright areas leak brightness into 
neighboring areas
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Bloom

⇨ Overly bright areas leak brightness into 
neighboring areas

­ Apply “bright pass” filter to image
­ Pixels above a certain threshold keep their luminance, 

everything else becomes black

­ Apply Gaussian blur
­ Add blurred image to final LDR image



© Copyright Ian D. Romanick 2009, 2010

2-March-2010

Bloom

⇨ Overly bright areas leak brightness into 
neighboring areas

­ Apply “bright pass” filter to image
­ Pixels above a certain threshold keep their luminance, 

everything else becomes black

­ Apply Gaussian blur
­ Add blurred image to final LDR image

This step can be very expensive!



© Copyright Ian D. Romanick 2009, 2010

2-March-2010

Bloom

⇨ Blur optimization:
­ Make multiple down-scaled images (i.e., mipmaps)

­ Largest image should be 1/8th the size of the original

­ Blur each down-scaled image
­ This approximates a doubling of the filter kernel size

­ Apply small filter kernel
­ [Kalogirou 2006] suggests 5x5 is sufficient
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Next week...

⇨ Beyond bumpmaps:
­ Relief textures
­ Parallax textures
­ Interior mapping
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Legal Statement

This work represents the view of the authors and does not necessarily 
represent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other 
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service 
marks of others.
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