
© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

VGP352 – Week 2

⇨ Agenda:
 Procedural texturing and modeling

 Rationale
 Basic techniques / examples
 Noise
 Anti-aliasing

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Procedural Graphics

⇨ Generation of textures, models, or animation
from code instead of data

 Creation may happen at rendering-time or at
application load-time

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Procedural Graphics

⇨ Why?
 Less space!
 Easier to add “random” variation
 May be easier to describe than to draw

 L-systems for trees
 Fractals for whole worlds
 etc.

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Procedural Graphics

⇨ Example: “Debris” by Farbrausch
 Entire demo is 181,248 bytes

 This JPEG image is 166,059 bytes!

 See http://scene.org/file.php?id=373930 or
http://www.youtube.com/watch?v=wqu_IpkOYBg&fmt=22

http://scene.org/file.php?id=373930
http://www.youtube.com/watch?v=wqu_IpkOYBg&fmt=22

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Brick Shader

⇨ Given some parameters, generate an image that
looks like bricks

Brick width Mortar width

B
ric

k
he

ig
ht

M
or

ta
r

h e
ig

ht

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Brick Shader

⇨ Given some parameters, generate an image that
looks like bricks

 Divide shader-space into cells
 Each cell is conceptually a 1×1 unit

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Brick Shader

⇨ Bottom row is easy:
 If s is less than brick_width / (brick_width +

mortar_width), the color is brick

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Brick Shader

⇨ Top row is the bottom row with an offset
 If t is greater than brick_height /

(brick_height + mortar_height), add 0.5 to s

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Toy Ball

⇨ Texture consists of a complex shape
 Can't use simple compares to determine which region

a point is in
 All of the boundaries are straight lines

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Toy Ball

⇨ Divide shader space into regions called half
spaces

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Toy Ball

⇨ If we draw a line through 2D space, how do we
determine which side of that line a point is on?

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Toy Ball

⇨ If we draw a line through 2D space, how do we
determine which side of that line a point is on?

d
n

 Use the parametric
definition of a line

 Use x and y from the
point

 If the result is less than 0,
the point is “inside”

 If the result is equal to 0,
the point is on the line

 If the result is greater
than 0, the point is
“outside”

0=a xb y−d

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Toy Ball

⇨ What does this look like?

a xb y−d

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Toy Ball

⇨ What does this look like?

⇨ Our friend, the dot-product:

[a b −d]⋅[x y 1]

a xb y−d

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Toy Ball

⇨ We want a binary answer whether the point is
inside or outside
dist = dot(p, half_space);
in_or_out = (dist < 0.0) ? 0.0 : 1.0;

 A more succinct way in GLSL uses the step function:

dist = dot(p, half_space);
in_or_out = step(0.0, dist);

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Toy Ball

⇨ We want a binary answer whether the point is
inside or outside of all 5 half-spaces
dist.x = dot(p, half_space0);
dist.y = dot(p, half_space1);
dist.z = dot(p, half_space2);
dist.w = dot(p, half_space3);

dist.x = step(dot(dist, vec4(1.0))) +
 step(0.0, dot(p, half_space4));

in_or_out = dist.x > 4.0;
color = mix(ball_color, star_color, in_or_out);

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

References

http://www.wired.com/gaming/gamingreviews/magazine/16-08/pl_games

http://people.freedesktop.org/~idr/GLSL_presentation/GLSL-Portland-Bill.PPT

http://www.wired.com/gaming/gamingreviews/magazine/16-08/pl_games
http://people.freedesktop.org/~idr/GLSL_presentation/GLSL-Portland-Bill.PPT

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Wang Tiles

⇨ Goal: we want to create an infinite, non-
repeating texture for things like grass, sand, etc.

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Wang Tiles

⇨ Goal: we want to create an infinite, non-
repeating texture for things like grass, sand, etc.

 Even a 2048x2048 texture will show tiling artifacts
 And it will use 16MB of texture memory...yuck!

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Wang Tiles

⇨ Goal: we want to create an infinite, non-
repeating texture for things like grass, sand, etc.

 Even a 2048x2048 texture will show tiling artifacts
 And it will use 16MB of texture memory...yuck!

⇨ Create a “mosaic” from small a few small “tiles”

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Wang Tiles

⇨ Goal: we want to create an infinite, non-
repeating texture for things like grass, sand, etc.

 Even a 2048x2048 texture will show tiling artifacts
 And it will use 16MB of texture memory...yuck!

⇨ Create a “mosaic” from small a few small “tiles”
 If the tile selection is pseudo-random, as few as 32

tiles can have a very large repeat period
 Unlike mosaic tiles, texture tiles have to match at the

edges
 Either all tiles edges have to match or the selection algorithm

has to pick a tile that will match edges with its neighbors

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Wang Tiles – Edge Coloring

⇨ Name the four tile edges N, E, S, W
 The N/S edges can have one of K

v
 edge “colors”

 The E/W edges can have one of K
h
 edge “colors”

 A tile with an N edge of color X must be south of a tile with an
S edge of color X

 A tile with each possible combination of edge colors
must exist

 There must be at least K
v

2×K
h

2 tiles

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Wang Tiles – Tile Arrangement

⇨ Assuming we have a set of tiles...
 Generating tiles from a sample source image is a

larger topic than we have time for

⇨ Arrange tiles in a K
v

2×K
h

2 pattern in texture atlas

 Neighboring tiles must obey edge coloring
rules...even neighbors across border edges!

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Wang Tiles – Tile Arrangement

⇨ Given a pair of edge colors, the following
placement algorithm is use:

Index e ,1 e2={
0 if e1=e2=0

e1
2
2 e2−1 if e1e20
e2
2
2 e1 if e2e1≥0

e212−2 if e1=e20
e112−1 if e1e2=0

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Wang Tiles – Tile Selection

⇨ Given texture coordinate (s, t):
 Calculate tile index

 O
h
 = t / T

h

 O
v
 = s / T

v

 Hash tile index to calculate edge colors
 C

s
 = H(H(O

h
) + O

v
) % K

v

 C
n
 = H(H(O

h
) + O

v
 + 1) % K

v

 C
w
 = H(O

h
 + H(O

v
 * 2)) % K

h

 C
e
 = H(O

h
 + 1 + H(O

v
 * 2)) % K

h

 Notice that C
e
(x, y) = C

w
(x + 1, y)

 Convert edge colors to row / column indexes

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Wang Tiles – Tile Selection

⇨ Given texture coordinate (s, t):
 Calculate row / column position in texture

 t
base

 = I
h
 * T

h

 s
base

 = I
v
 * T

v

 Calculate texel offset within tile
 t

offset
 = t % T

h

 s
offset

 = s % T
v

 Sample the texture!
 Final coordinate is (s

base
 + s

offset
, t

base
 + t

offset
)

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Wang Tiles – Hash Function

⇨ Implement as a permutation table
 Use a texture rectangle that is 1 texel tall

 Use roughly 4x entries in table as possible edge colors

 More recent hardware can use uniform arrays
 Geforce 6 or Radeon X800

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Wang Tiles – Filtering Gotchas

⇨ Mipmap filtering can be a problem...
 The 1x1 level blends all of the tiles together...bad!!!

 Need to clamp the minimum LOD to the level lowest level
that doesn't blur across tile boundaries

 The tile map is just a big texture atlas

 This is much easier with texture arrays

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

References

http://en.wikipedia.org/wiki/Wang_tile

Wei, L. “Tile-based texture mapping on graphics hardware.” In ACM
SIGGRAPH 2004 Sketches (Los Angeles, California, August 08 -
12, 2004). R. Barzel, Ed. SIGGRAPH '04. ACM, New York, NY,
67. http://graphics.stanford.edu/papers/tile_mapping_gh2004/

Wei, L. “Tile-Based Texture Mapping.” In GPU Gems 2. Ed. Matt
Pharr. Upper Saddle River, NJ: Pearson Education, Inc., April
2005.
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter12.html

http://en.wikipedia.org/wiki/Wang_tile
http://graphics.stanford.edu/papers/tile_mapping_gh2004/
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter12.html

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Crater Shader

⇨ Task: create a procedural texture for impact
craters on, for example, the moon

Original image from http://www.hq.nasa.gov/office/pao/History/SP-362/ch5.2.htm

http://www.hq.nasa.gov/office/pao/History/SP-362/ch5.2.htm

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Crater Shader

⇨ Two parts to this shader

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Crater Shader

⇨ Two parts to this shader
 Height / normal
 Color

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Crater Shader

⇨ Two parts to this shader
 Height / normal
 Color
 Attack each separately, then try

to unify

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Crater Shader – Height

⇨ Craters are generally circular
 Height varies with distance from center

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Crater Shader – Height

⇨ Craters are generally circular
 Height varies with distance from center
 Associate a height with each distance where there is

a change

H
0

H
1

H
3

H
4

R
0R

2
R

3
R

4
R

1

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Crater Shader – Height

⇨ Select an interpolation scheme between each
region

 R
0
 to R

1
 and R

1
 to R

2
 could be linear, R

2
 to R

3
 and R

3
 to

R
4
 could be exponential, etc.

H
0

H
1

H
3

H
4

R
0R

2
R

3
R

4
R

1

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Crater Shader – Height

⇨ In shader:
 Determine fragment distance from center

r = length(position – center);

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Crater Shader – Height

⇨ In shader:
 Determine fragment distance from center

r = length(position – center);

 Determine which region contains the fragment
if (r < crater_param[1].x) {
 ...
} else if (r < crater_param[2].x) {
 ...
} else ...

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Crater Shader – Height

⇨ In shader:
 Determine fragment distance from center

r = length(position – center);

 Determine which region contains the fragment
if (r < crater_param[1].x) {
 ...
} else if (r < crater_param[2].x) {
 ...
} else ...

 Determine fragment location in region
t = (r – crater_param[n].x)
 / (crater_param[n+1].x crater_param[n].x);

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Crater Shader – Height

⇨ In shader:
 Determine fragment distance from center

r = length(position – center);

 Determine which region contains the fragment
if (r < crater_param[1].x) {
 ...
} else if (r < crater_param[2].x) {
 ...
} else ...

 Determine fragment location in region
t = (r – crater_param[n].x)
 / (crater_param[n+1].x crater_param[n].x);

 Perform interpolation
h = mix(crater_param[n+1].y, crater_param[n].y, t);

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Crater Shader – Color

⇨ Color works in a similar manner
 Use one color inside the crater with alpha set to 1.0
 Use another color outside the crater

 Set alpha to 1.0 in “spokes” from crater
 Falloff to alpha = 0.0 off spokes

H
0

H
1

H
3

H
4

R
0R

2
R

3
R

4
R

1

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Crater Shader – Color

⇨ Selecting crater interior color is trivial
 If r is less than R

3
, use interior color

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Crater Shader – Color

⇨ Selecting crater interior color is trivial
 If r is less than R

3
, use interior color

⇨ Selecting spoke color is more complex

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Crater Shader – Color

⇨ Selecting crater interior color is trivial
 If r is less than R

3
, use interior color

⇨ Selecting spoke color is more complex
 Need to know distance from center and angle (i.e.,

polar coordinates)

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Crater Shader – Color

⇨ Selecting crater interior color is trivial
 If r is less than R

3
, use interior color

⇨ Selecting spoke color is more complex
 Need to know distance from center and angle (i.e.,

polar coordinates)
 Place spokes separated by fixed angles

 Spokes are determined by a cosine wave in polar
coordinates

 r
spoke

 = cos(× frequency)

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Crater Shader – Color

⇨ Selecting crater interior color is trivial
 If r is less than R

3
, use interior color

⇨ Selecting spoke color is more complex
 Need to know distance from center and angle (i.e.,

polar coordinates)
 Place spokes separated by fixed angles

 Spokes are determined by a cosine wave in polar
coordinates

 r
spoke

 = cos(× frequency)

 Select random length and thickness for each spoke
 Noise to the rescue

 Thickness is determined by raising (r
spoke

 × amplitude) to a

power

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

References

Ebert, David, et. al., Texturing and Modeling: A Procedural
Approach, second edition, Morgan-Kaufmann, 1998. pp. 315 –
318.

 This section provided the inspiration for the crater shader.

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Brief history of noise

⇨ Developed by Ken Perlin in the early 80s
 Ken worked on the revolutionary graphics for the

movie Tron
 Frustrated that Tron's graphics looked so “machine-

like,” he wanted to escape the "machine-look ghetto."

⇨ Tron was not nominated for the Academy Award
for Special Effects

 It “cheated” by using computers
 What movie won?

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Brief history of noise

⇨ Developed by Ken Perlin in the early 80s
 Ken worked on the revolutionary graphics for the

movie Tron
 Frustrated that Tron's graphics looked so “machine-

like,” he wanted to escape the "machine-look ghetto."

⇨ Tron was not nominated for the Academy Award
for Special Effects

 It “cheated” by using computers
 What movie won?

 E.T. the Extra Terrestrial won, defeating Blade Runner and
Poltergeist

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Brief history of noise

⇨ In 1983 Perlin worked on creating a space filling,
apparently random signal function

 Appear random
 Be controllable
 All features to be approximately the same size
 All the features to be roughly isotropic
 Have a range [-1, 1]

⇨ First presented as a course at SIGGRAPH '84
 The paper followed at SIGGRAPH '85
 The Academy Award for Technical Achievement

followed in 1997

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Using Noise

⇨ In Perlin's words, “noise is salt for
graphics.”

 Salt by itself is boring
 Without salt, food is boring too

Original image from http://en.wikipedia.org/wiki/Perlin_noise

http://en.wikipedia.org/wiki/Perlin_noise

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Using Noise

⇨ Noise is typically used in multiple frequencies
 Each frequency band is called an octave
 As octave frequency increases, the amplitude

decreases
NOISE p=∑

i=0

N−0 noise f i p

ai

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Using Noise

⇨ Add noise to boring functions or textures to
make them interesting

 Marble is the classic example

sin x∣NOISE y ∣

Original image from http://www.noisemachine.com/talk1/23.html, copyright Ken
Perlin

http://www.noisemachine.com/talk1/23.html

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Implementing Noise

⇨ Use GLSL noise function
 Most (all?) implementations are really bad
 Some just return a constant value for all inputs!

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Implementing Noise

⇨ Implement noise in C, generate noise texture
 Tiling artifacts
 Consumes texture resources

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Implementing Noise

⇨ Implement noise in GLSL code
 Several implementations exist:

Green, Simon. “Implementing Improved Perlin Noise.” GPU
Gems 2. Ed. Matt Pharr. Upper Saddle River, NJ: Pearson
Education, Inc., April 2005.
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter26.html

Olano, Marc. “Modified Noise for Evaluation on Graphics
Hardware.” Proceedings of Graphics Hardware 2005,
Eurographics/ACM SIGGRAPH, July 2005.
http://www.cs.umbc.edu/~olano/papers/mNoise.pdf

 Most use several textures for tables
 Use 60 – 80 GPU instructions

http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter26.html
http://www.cs.umbc.edu/~olano/papers/mNoise.pdf

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

References

Perlin, K. 1999. Making Noise. Presented at GDCHardCore.
http://www.noisemachine.com/talk1/

Perlin, K. 2002. Improving noise. In Proceedings of the 29th Annual
Conference on Computer Graphics and interactive Techniques
(San Antonio, Texas, July 23 - 26, 2002). SIGGRAPH '02. ACM,
New York, NY, 681-682. http://mrl.nyu.edu/~perlin/noise/

Zucker, Matt. 2001. The Perlin noise math FAQ.
http://www.cs.cmu.edu/~mzucker/code/perlin-noise-math-faq.html

http://freespace.virgin.net/hugo.elias/models/m_perlin.htm

http://www.noisemachine.com/talk1/
http://mrl.nyu.edu/~perlin/noise/
http://www.cs.cmu.edu/~mzucker/code/perlin-noise-math-faq.html
http://freespace.virgin.net/hugo.elias/models/m_perlin.htm

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Anti-aliasing Procedural Textures

⇨ How can we control aliasing in procedural
textures?

 No magic mipmapping for procedural textures!

⇨ Three common solutions:
 Supersampling – expensive!
 Analytical anti-aliasing – difficult!
 Render to a texture, use mipmapping – sets an upper

bound on texture resolution, may consume a lot of
memory

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Anti-aliasing – Supersampling

⇨ Determine the size / shape of the sample area
 The GLSL functions dFdx(), dFdy(), and

fwidth() provide this information
 These are called partial derivatives
 Not available in unextended OpenGL ES 2.0

 Added by GL_OES_standard_derivatives

 Roughly the same information used by the texture
filtering hardware

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Anti-aliasing – Supersampling

⇨ Perform multiple texture calculations within the
sample area

 A rectangle based on dFdx() and dFdy() should be
sufficient

 Filter (average) the results

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Anti-aliasing – Analytical

⇨ Formulate the shader to calculate the average
color over an area

 Usually ranges from difficult to nearly impossible

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Anti-aliasing – Index Aliasing

⇨ Sometimes the boundary function causes
aliasing

 Remember the toy ball shader:

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Anti-aliasing – Index Aliasing

⇨ Sometimes the boundary function causes
aliasing

 Remember the toy ball shader:

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Anti-aliasing – Index Aliasing

⇨ step function adds unnecessary high frequency
components

 Instead use smoothstep based on the width of the
sample area

 Calculates: -2t3 + 3t2, t ∈ [0, 1]

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

References

Ebert, D. S., Musgrave, F. K., Peachey, D., Perlin, K., and Worley,
S. Texturing and Modeling: a Procedural Approach. 3rd Ed.
Morgan Kaufmann Publishers Inc., 2002.

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Next week...

⇨ And by “next week” I mean tomorrow...
⇨ Quiz #1
⇨ Render-to-texture
⇨ Improving the lighting model
 Environment maps as lights
 Fresnel reflection

© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Legal Statement

This work represents the view of the authors and does not necessarily
represent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

