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VGP352 – Week 2

⇨ Agenda:
 Procedural texturing and modeling

 Rationale
 Basic techniques / examples
 Noise
 Anti-aliasing
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Procedural Graphics

⇨ Generation of textures, models, or animation 
from code instead of data

 Creation may happen at rendering-time or at 
application load-time
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Procedural Graphics

⇨ Why?
 Less space!
 Easier to add “random” variation
 May be easier to describe than to draw

 L-systems for trees
 Fractals for whole worlds
 etc.
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Procedural Graphics

⇨ Example: “Debris” by Farbrausch
 Entire demo is 181,248 bytes

 This JPEG image is 166,059 bytes!

 See http://scene.org/file.php?id=373930 or 
http://www.youtube.com/watch?v=wqu_IpkOYBg&fmt=22

http://scene.org/file.php?id=373930
http://www.youtube.com/watch?v=wqu_IpkOYBg&fmt=22
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Brick Shader

⇨ Given some parameters, generate an image that 
looks like bricks
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Brick Shader

⇨ Given some parameters, generate an image that 
looks like bricks

 Divide shader-space into cells
 Each cell is conceptually a 1×1 unit
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Brick Shader

⇨ Bottom row is easy:
 If s is less than brick_width / (brick_width + 

mortar_width), the color is brick
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Brick Shader

⇨ Top row is the bottom row with an offset
 If t is greater than brick_height / 

(brick_height + mortar_height), add 0.5 to s
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Toy Ball

⇨ Texture consists of a complex shape
 Can't use simple compares to determine which region 

a point is in
 All of the boundaries are straight lines
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Toy Ball

⇨ Divide shader space into regions called half 
spaces
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Toy Ball

⇨ If we draw a line through 2D space, how do we 
determine which side of that line a point is on?
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Toy Ball

⇨ If we draw a line through 2D space, how do we 
determine which side of that line a point is on?

d
n

 Use the parametric 
definition of a line

 Use x and y from the 
point

 If the result is less than 0, 
the point is “inside”

 If the result is equal to 0, 
the point is on the line

 If the result is greater 
than 0, the point is 
“outside”

0=a xb y−d
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Toy Ball

⇨ What does this look like?

a xb y−d
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Toy Ball

⇨ What does this look like?

⇨ Our friend, the dot-product:

[a b −d ]⋅[ x y 1 ]

a xb y−d
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Toy Ball

⇨ We want a binary answer whether the point is 
inside or outside
dist = dot(p, half_space);
in_or_out = (dist < 0.0) ? 0.0 : 1.0;

 A more succinct way in GLSL uses the step function:

dist = dot(p, half_space);
in_or_out = step(0.0, dist);
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Toy Ball

⇨ We want a binary answer whether the point is 
inside or outside of all 5 half-spaces
dist.x = dot(p, half_space0);
dist.y = dot(p, half_space1);
dist.z = dot(p, half_space2);
dist.w = dot(p, half_space3);

dist.x = step(dot(dist, vec4(1.0))) +
    step(0.0, dot(p, half_space4));

in_or_out = dist.x > 4.0;
color = mix(ball_color, star_color, in_or_out);



© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

References

http://www.wired.com/gaming/gamingreviews/magazine/16-08/pl_games

http://people.freedesktop.org/~idr/GLSL_presentation/GLSL-Portland-Bill.PPT

http://www.wired.com/gaming/gamingreviews/magazine/16-08/pl_games
http://people.freedesktop.org/~idr/GLSL_presentation/GLSL-Portland-Bill.PPT


© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Wang Tiles

⇨ Goal: we want to create an infinite, non-
repeating texture for things like grass, sand, etc.
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Wang Tiles

⇨ Goal: we want to create an infinite, non-
repeating texture for things like grass, sand, etc.

 Even a 2048x2048 texture will show tiling artifacts
 And it will use 16MB of texture memory...yuck!
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Wang Tiles

⇨ Goal: we want to create an infinite, non-
repeating texture for things like grass, sand, etc.

 Even a 2048x2048 texture will show tiling artifacts
 And it will use 16MB of texture memory...yuck!

⇨ Create a “mosaic” from small a few small “tiles”
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Wang Tiles

⇨ Goal: we want to create an infinite, non-
repeating texture for things like grass, sand, etc.

 Even a 2048x2048 texture will show tiling artifacts
 And it will use 16MB of texture memory...yuck!

⇨ Create a “mosaic” from small a few small “tiles”
 If the tile selection is pseudo-random, as few as 32 

tiles can have a very large repeat period
 Unlike mosaic tiles, texture tiles have to match at the 

edges
 Either all tiles edges have to match or the selection algorithm 

has to pick a tile that will match edges with its neighbors
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Wang Tiles – Edge Coloring

⇨ Name the four tile edges N, E, S, W
 The N/S edges can have one of K

v
 edge “colors”

 The E/W edges can have one of K
h
 edge “colors”

 A tile with an N edge of color X must be south of a tile with an 
S edge of color X

 A tile with each possible combination of edge colors 
must exist

 There must be at least K
v

2×K
h

2 tiles
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Wang Tiles – Tile Arrangement

⇨ Assuming we have a set of tiles...
 Generating tiles from a sample source image is a 

larger topic than we have time for

⇨ Arrange tiles in a K
v

2×K
h

2 pattern in texture atlas

 Neighboring tiles must obey edge coloring 
rules...even neighbors across border edges!
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Wang Tiles – Tile Arrangement

⇨ Given a pair of edge colors, the following 
placement algorithm is use:

Index e ,1 e2={
0 if e1=e2=0

e1
2
2 e2−1 if e1e20
e2
2
2 e1 if e2e1≥0

e212−2 if e1=e20
e112−1 if e1e2=0
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Wang Tiles – Tile Selection

⇨ Given texture coordinate (s, t):
 Calculate tile index

 O
h
 = t / T

h

 O
v
 = s / T

v

 Hash tile index to calculate edge colors
 C

s
 = H(H(O

h
) + O

v
) % K

v

 C
n
 = H(H(O

h
) + O

v
 + 1) % K

v

 C
w
 = H(O

h
 + H(O

v
 * 2)) % K

h

 C
e
 = H(O

h
 + 1 + H(O

v
 * 2)) % K

h

 Notice that C
e
(x, y) = C

w
(x + 1, y)

 Convert edge colors to row / column indexes
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Wang Tiles – Tile Selection

⇨ Given texture coordinate (s, t):
 Calculate row / column position in texture

 t
base

 = I
h
 * T

h

 s
base

 = I
v
 * T

v

 Calculate texel offset within tile
 t

offset
 = t % T

h

 s
offset

 = s % T
v

 Sample the texture!
 Final coordinate is (s

base
 + s

offset
, t

base
 + t

offset
)
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Wang Tiles – Hash Function

⇨ Implement as a permutation table
 Use a texture rectangle that is 1 texel tall

 Use roughly 4x entries in table as possible edge colors

 More recent hardware can use uniform arrays
 Geforce 6 or Radeon X800
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Wang Tiles – Filtering Gotchas

⇨ Mipmap filtering can be a problem...
 The 1x1 level blends all of the tiles together...bad!!!

 Need to clamp the minimum LOD to the level lowest level 
that doesn't blur across tile boundaries

 The tile map is just a big texture atlas

 This is much easier with texture arrays
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Crater Shader

⇨ Task: create a procedural texture for impact 
craters on, for example, the moon

Original image from http://www.hq.nasa.gov/office/pao/History/SP-362/ch5.2.htm

http://www.hq.nasa.gov/office/pao/History/SP-362/ch5.2.htm
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Crater Shader

⇨ Two parts to this shader
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Crater Shader

⇨ Two parts to this shader
 Height / normal
 Color
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Crater Shader

⇨ Two parts to this shader
 Height / normal
 Color
 Attack each separately, then try 

to unify
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Crater Shader – Height

⇨ Craters are generally circular
 Height varies with distance from center
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Crater Shader – Height

⇨ Craters are generally circular
 Height varies with distance from center
 Associate a height with each distance where there is 

a change
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Crater Shader – Height

⇨ Select an interpolation scheme between each 
region

 R
0
 to R

1
 and R

1
 to R

2
 could be linear, R

2
 to R

3
 and R

3
 to 

R
4
 could be exponential, etc.
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Crater Shader – Height

⇨ In shader:
 Determine fragment distance from center

r = length(position – center);
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Crater Shader – Height

⇨ In shader:
 Determine fragment distance from center

r = length(position – center);

 Determine which region contains the fragment
if (r < crater_param[1].x) {
    ...
} else if (r < crater_param[2].x) {
    ...
} else ...
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Crater Shader – Height

⇨ In shader:
 Determine fragment distance from center

r = length(position – center);

 Determine which region contains the fragment
if (r < crater_param[1].x) {
    ...
} else if (r < crater_param[2].x) {
    ...
} else ...

 Determine fragment location in region
t = (r – crater_param[n].x)
 / (crater_param[n+1].x  crater_param[n].x);
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Crater Shader – Height

⇨ In shader:
 Determine fragment distance from center

r = length(position – center);

 Determine which region contains the fragment
if (r < crater_param[1].x) {
    ...
} else if (r < crater_param[2].x) {
    ...
} else ...

 Determine fragment location in region
t = (r – crater_param[n].x)
 / (crater_param[n+1].x  crater_param[n].x);

 Perform interpolation
h = mix(crater_param[n+1].y, crater_param[n].y, t);
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Crater Shader – Color

⇨ Color works in a similar manner
 Use one color inside the crater with alpha set to 1.0
 Use another color outside the crater

 Set alpha to 1.0 in “spokes” from crater
 Falloff to alpha = 0.0 off spokes
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Crater Shader – Color

⇨ Selecting crater interior color is trivial
 If r is less than R

3
, use interior color
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Crater Shader – Color

⇨ Selecting crater interior color is trivial
 If r is less than R

3
, use interior color

⇨ Selecting spoke color is more complex
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Crater Shader – Color

⇨ Selecting crater interior color is trivial
 If r is less than R

3
, use interior color

⇨ Selecting spoke color is more complex
 Need to know distance from center and angle (i.e., 

polar coordinates)
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Crater Shader – Color

⇨ Selecting crater interior color is trivial
 If r is less than R

3
, use interior color

⇨ Selecting spoke color is more complex
 Need to know distance from center and angle (i.e., 

polar coordinates)
 Place spokes separated by fixed angles

 Spokes are determined by a cosine wave in polar 
coordinates

 r
spoke

 = cos( × frequency)
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Crater Shader – Color

⇨ Selecting crater interior color is trivial
 If r is less than R

3
, use interior color

⇨ Selecting spoke color is more complex
 Need to know distance from center and angle (i.e., 

polar coordinates)
 Place spokes separated by fixed angles

 Spokes are determined by a cosine wave in polar 
coordinates

 r
spoke

 = cos( × frequency)

 Select random length and thickness for each spoke
 Noise to the rescue

 Thickness is determined by raising (r
spoke

 × amplitude) to a 

power
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Brief history of noise

⇨ Developed by Ken Perlin in the early 80s
 Ken worked on the revolutionary graphics for the 

movie Tron
 Frustrated that Tron's graphics looked so “machine-

like,” he wanted to escape the "machine-look ghetto."

⇨ Tron was not nominated for the Academy Award 
for Special Effects

 It “cheated” by using computers
 What movie won?
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Brief history of noise

⇨ Developed by Ken Perlin in the early 80s
 Ken worked on the revolutionary graphics for the 

movie Tron
 Frustrated that Tron's graphics looked so “machine-

like,” he wanted to escape the "machine-look ghetto."

⇨ Tron was not nominated for the Academy Award 
for Special Effects

 It “cheated” by using computers
 What movie won?

 E.T. the Extra Terrestrial won, defeating Blade Runner and 
Poltergeist
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Brief history of noise

⇨ In 1983 Perlin worked on creating a space filling, 
apparently random signal function

 Appear random
 Be controllable
 All features to be approximately the same size
 All the features to be roughly isotropic
 Have a range [-1, 1]

⇨ First presented as a course at SIGGRAPH '84
 The paper followed at SIGGRAPH '85
 The Academy Award for Technical Achievement 

followed in 1997
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Using Noise

⇨ In Perlin's words, “noise is salt for 
graphics.”

 Salt by itself is boring
 Without salt, food is boring too

Original image from http://en.wikipedia.org/wiki/Perlin_noise

http://en.wikipedia.org/wiki/Perlin_noise
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Using Noise

⇨ Noise is typically used in multiple frequencies
 Each frequency band is called an octave
 As octave frequency increases, the amplitude 

decreases
NOISE  p=∑

i=0

N−0 noise f i p

ai
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Using Noise

⇨ Add noise to boring functions or textures to 
make them interesting

 Marble is the classic example

sin x∣NOISE  y ∣

Original image from http://www.noisemachine.com/talk1/23.html, copyright Ken 
Perlin

http://www.noisemachine.com/talk1/23.html
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Implementing Noise

⇨ Use GLSL noise function
 Most (all?) implementations are really bad
 Some just return a constant value for all inputs!
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Implementing Noise

⇨ Implement noise in C, generate noise texture
 Tiling artifacts
 Consumes texture resources
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Implementing Noise

⇨ Implement noise in GLSL code
 Several implementations exist:

Green, Simon. “Implementing Improved Perlin Noise.” GPU 
Gems 2.  Ed. Matt Pharr.  Upper Saddle River, NJ: Pearson 
Education, Inc.,  April 2005.
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter26.html

Olano, Marc. “Modified Noise for Evaluation on Graphics 
Hardware.”  Proceedings of Graphics Hardware 2005, 
Eurographics/ACM SIGGRAPH, July 2005.  
http://www.cs.umbc.edu/~olano/papers/mNoise.pdf

 Most use several textures for tables
 Use 60 – 80 GPU instructions

http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter26.html
http://www.cs.umbc.edu/~olano/papers/mNoise.pdf
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Anti-aliasing Procedural Textures

⇨ How can we control aliasing in procedural 
textures?

 No magic mipmapping for procedural textures!

⇨ Three common solutions:
 Supersampling – expensive!
 Analytical anti-aliasing – difficult!
 Render to a texture, use mipmapping – sets an upper 

bound on texture resolution, may consume a lot of 
memory
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Anti-aliasing – Supersampling

⇨ Determine the size / shape of the sample area
 The GLSL functions dFdx(), dFdy(), and 

fwidth() provide this information
 These are called partial derivatives
 Not available in unextended OpenGL ES 2.0

 Added by GL_OES_standard_derivatives

 Roughly the same information used by the texture 
filtering hardware
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Anti-aliasing – Supersampling

⇨ Perform multiple texture calculations within the 
sample area

 A rectangle based on dFdx() and dFdy() should be 
sufficient

 Filter (average) the results
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Anti-aliasing – Analytical

⇨ Formulate the shader to calculate the average 
color over an area

 Usually ranges from difficult to nearly impossible
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Anti-aliasing – Index Aliasing

⇨ Sometimes the boundary function causes 
aliasing

 Remember the toy ball shader:



© Copyright Ian D. Romanick 2008 - 2010

26-January-2010

Anti-aliasing – Index Aliasing

⇨ Sometimes the boundary function causes 
aliasing

 Remember the toy ball shader:
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Anti-aliasing – Index Aliasing

⇨ step function adds unnecessary high frequency 
components

 Instead use smoothstep based on the width of the 
sample area

 Calculates: -2t3 + 3t2, t ∈ [0, 1]
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Next week...

⇨ And by “next week” I mean tomorrow...
⇨ Quiz #1
⇨ Render-to-texture
⇨ Improving the lighting model
 Environment maps as lights
 Fresnel reflection
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This work represents the view of the authors and does not necessarily 
represent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other 
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Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service 
marks of others.
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