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VGP352 – Week 1

⇨ Agenda:
­ Course Intro
­ Curves
­ Curved surfaces
­ Per-fragment lighting revisited

­ Phong Shading
­ Surface-space

­ Bump mapping
­ Basic usage
­ Bumpmap storage
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What should you already know?

⇨ C++ and object oriented programming
­ For most assignments you will need to implement 

classes or portions of classes that conform to specific 
interfaces

⇨ Graphics terminology and concepts
­ Polygon, pixel, texture, infinite light, point light, spot 

light, etc.

⇨ Linear algebra and vector math
­ Matrix arithmetic
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What should you already know?

⇨ Material from VGP351:
­ Using OpenGL

­ Setting up shaders
­ Getting data in
­ etc.

­ Transformations
­ 3D space transformations
­ Projections

­ Lighting and shading
­ Texture mapping
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What will you learn?

⇨ Advanced lighting models
­ BRDFs
­ Fur and hair rendering
­ “Toon” and other non-photorealistic rendering
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How will you be graded?

⇨ Four bi-weekly quizzes
­ These are listed on the syllabus

⇨ One final exam
⇨ Three programming projects

­ The first will be pretty small...perhaps small enough to 
complete in class

­ The remaining two projects will be larger

⇨ One in-class presentation
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How will you be graded?

⇨ Keep in mind:
­ There is a lot more reading than in VGP351

­ More readings from the textbook
­ Readings from academic papers

­ There is more programming than in VGP351
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How will programs be graded?

⇨ Does the program produce the correct output?
⇨ Are appropriate algorithms and data-structures 

used?
⇨ Is the code readable, clear, and properly 

documented?
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How will the presentation be graded?

⇨ During the term, several papers will be assigned 
to read

­ Select and present one of the assigned readings to 
the class

­ What is the problem being solved?
­ How does the paper's author solve that problem?
­ What is novel about the author's solution?
­ What questions does the paper leave unanswered?

­ Material from some papers may appear on bi-weekly 
quizzes
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Class Web Site

⇨ Syllabus, assignments, and base code:
http://people.freedesktop.org/~idr/2010Q1-VGP352/

http://people.freedesktop.org/~idr/2010Q1-VGP352/
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Camera Control

⇨ How can we move a virtual camera through a 
series of artist selected positions?
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Camera Control

⇨ How can we move a virtual camera through a 
series of artist selected positions?

­ Linearly interpolate between the positions

­ Results in a function that is positionally continuous
­ Also known as C0 continuity

⇨ What's wrong with C0?

pt  = p0t p1−p0

= 1−t p0t p1
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Camera Control

⇨ How can we move a virtual camera through a 
series of artist selected positions?

­ Linearly interpolate between the positions

­ Results in a function that is positionally continuous
­ Also known as C0 continuity

⇨ What's wrong with C0?
­ Jarring change in direction at control points
­ Jarring change in speed at control points

­ Direction change or speed change = velocity change

pt  = p0t p1−p0

= 1−t p0t p1
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Camera Control

⇨ How can we fix this?
­ Apply linear interpolation again
­ Also add an additional control point

­ Now have p
0
, p

1
, and p

2

⇨ To calculate p(t):
­ Lerp between p

0
 and p

1
, call the result d

­ Lerp between p
1
 and p

2
, call the result e

­ Lerp between d and e

⇨ Formally, this is a Bézier curve
­ Pronounced beh-zee-eh
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Bézier Curve

⇨ This works out to:

⇨ More formally:

­ Curve with x control points is degree x-1
­ n is the degree of the polynomial that defines the curve
­ Our curve with 3 control points is degree 2

­ The initial control points are p
i

0 but are written p
i

pt =1−t 2p02 t 1−t p1t2p2

pi
k
t =1−t pi

k−1
t t pi1

k−1
t  ,{k = 1..n

i = 0 ..n−k
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Bézier Curve

⇨ This works out to:

⇨ More formally:

­ Curve with x control points is degree x-1
­ n is the degree of the polynomial that defines the curve
­ Our curve with 3 control points is degree 2

­ The initial control points are p
i

0 but are written p
i

pt =1−t 2p02 t 1−t p1t2p2

pi
k
t =1−t pi

k−1
t t pi1

k−1
t  ,{k = 1..n

i = 0 ..n−k
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Bézier Curve

p
1

p
2

p
0
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Bézier Curve

d

p
1

p
2

p
0
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Bézier Curve

d

p
1

p
2

e

p
0
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Bézier Curve

d

p
1

p
2

p(t)

e

p
0
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Bézier Curve

p
1

p
2

p
0
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Bézier Curve

⇨ Note:
­ Curve lies within the convex hull of the control points

­ Curve only passes through p
0
 and p

n
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Bézier Curve

⇨ Repeated interpolation is cumbersome
­ Also inefficient for large n

⇨ Can we do better?
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Bézier Curve

⇨ Repeated interpolation is cumbersome
­ Also inefficient for large n

⇨ Can we do better?
­ Yes!
­ We can use algebra instead of interpolation
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Bézier Basis Functions

⇨ Rewrite a weighted sum of control points:

­ B
i

n is the “Bernstein polynomial” or “Bézier basis 

function”
­ Note:

pt =∑i=0

n
Bi

n
t pi

Bi
n t  = ni  t

i 1−t n−i

=
n!

i!n−i!
t i 1−t n−i

t∈[0,1]Bi
n t ∈[0,1]

∑i=0

n
Bi

n
t =1
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Bézier Basis Functions
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Bézier Curve

⇨ Usually unnecessary to go higher than n=3
­ Why?
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Bézier Curve

⇨ Usually unnecessary to go higher than n=3
­ Why?
­ Evaluation cost increases as n increases
­ Cubic polynomials are the lowest degree whose 

derivative can change direction
­ This allows multiple cubic Bézier curves to be combine to 

approximate most shapes
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Piecewise Bézier Curves

⇨ Curve only passes through p
0
 and p

n

­ For camera control, we need to hit other definable 
points

⇨ Define multiple curves
­ Control points q

i
, r

i
, s

i
, etc.

­ Set q
n
 = r

0

­ This is called a joint
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Piecewise Bézier Curves

q
0

q
n

r
0

r
n
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Piecewise Bézier Curves

q
0

q
n

r
0

r
n

Still only C0!
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Piecewise Bézier Curves

⇨ We don't want the direction to suddenly change 
at the joint

­ Mathematically this means we want the function to be 
differentiable at the joint

­ This is the definition of C1

⇨ How is the derivative of a function at some point 
defined?
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Piecewise Bézier Curves

⇨ We don't want the direction to suddenly change 
at the joint

­ Mathematically this means we want the function to be 
differentiable at the joint

­ This is the definition of C1

⇨ How is the derivative of a function at some point 
defined?

­ It's the slope of a line tangent to the function at that 
point
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Piecewise Bézier Curves

⇨ What are the tangents 
at p

0
 and p

n
?

p
1

p
2

p
0
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Piecewise Bézier Curves

⇨ What are the tangents 
at p

0
 and p

n
?

p
1

p
2

p
0

m0 = p1−p0

m1 = pn−pn−1
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Piecewise Bézier Curves

⇨ How can continuity be improved?
­ Let:

­ m
0
 = tangent at start of first curve

­ m
1
 = tangent at end of first curve

­ m
2
 = tangent at start of second curve

­ m
3
 = tangent at end of second curve

­ Modify m
1
 and m

2
 so that they are parallel

m1⋅m2

∣m1∣∣m2∣
=1
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Piecewise Bézier Curves

⇨ If |m
1
| ≠ |m

2
| there will be a speed change at the 

joint
­ This is not C1, but it's better than C0

­ Sometimes G1 for geometrical continuity
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Derivative of a Bézier Curve

⇨ Derivative using the sum rule and regrouping:

­ Exercise for the reader to confirm:

­ Result is a Bézier curve of one lower degree

d
dt

pt =n∑i=0

n−1
Bi

n−1
t pi1−pi

d
dt

p0 = p1−p0

d
dt

p1 = pn−pn−1
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Curved Surfaces

⇨ Start with the same interpolation games
­ First extend from one parameter, t, to two parameters 

〈u, v〉

­ Use four control points, p
00

, p
01

, p
10

, p
11

, instead of two

­ Interpolate between adjacent pairs:

­ Also known as bilinear interpolation

e = 1−up00v p01

f = 1−up10v p11

p u , v = 1−vev f
= 1−u1−v p00u 1−v p011−u v p10uv p11
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Curved Surfaces

⇨ Extend to a curved surface in the same way as 
extending a line to a curve:

­ Add control points
­ For an n×m degree patch, there are (n+1)(m+1) control 

points
­ Usually n=m

­ Recursively interpolate between the control points
­ Or use Bernstein form
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Bézier Patches

⇨ Bernstein form:

­ As with Bézier curves:
­ Surface lies within convex hull of control points
­ And:

­ Second summation is just a Bézier curve!

pu , v =∑i=0

m
Bi

m
u∑ j=0

n
B j

n
v pi , j

u , v ∈[0,1]×[0,1]Bi
m
uB j

n
v ∈[0,1]

∑i=0

m

∑ j=0

n
Bi

m
uB j

n
v =1
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Bézier Patches

⇨ Bernstein form:

­ As with Bézier curves:
­ Surface lies within convex hull of control points
­ And:

­ Second summation is just a Bézier curve!

pu , v =∑i=0

m
Bi

m
u∑ j=0

n
B j

n
v pi , j

u , v ∈[0,1]×[0,1]Bi
m
uB j

n
v ∈[0,1]

∑i=0

m

∑ j=0

n
Bi

m
uB j

n
v =1
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Derivative of a Bézier Patch

⇨ Similar to Bézier curves:
∂p u ,v 

∂u
= m∑ j=0

n

∑i=0

m−1
Bi

m−1uB j
n v[pi1, j−pi , j]

∂p u ,v 
∂ v

= n∑i=0

m

∑ j=0

n−1
Bi

muB j
n−1v [pi , j1−pi , j]



© Copyright Ian D. Romanick 2010

12-January-2010

Normals of a Bézier Patch

⇨ How do we calculate the normal?
­ What we really want is the normal of the plane 

tangent to the surface
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Normals of a Bézier Patch

⇨ How do we calculate the normal?
­ What we really want is the normal of the plane 

tangent to the surface
­ The partial derivatives give two vectors that lie in that 

plane... just take the cross product!

n u ,v =
∂pu ,v 

∂u
×
∂pu ,v 

∂ v
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Phong Shading Recap

⇨ Phong shading... aka per-fragment lighting
­ Calculate lighting parameters per-vertex
­ Interpolate calculated values
­ Calculate lighting per-fragment based on interpolated 

parameter values
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Phong Shading Recap

attribute vec3 normal;
attribute vec4 color;
uniform mat3 normal_xform;
uniform mat4 vertex_xform;
uniform mat4 mvp;

varying vec3 vertex_normal;
varying vec4 vertex_color;
varying vec3 vertex;

void main(void)
{
    gl_Position = mvp * gl_Vertex;

    vertex_normal = normal_xform * normal;
    vertex_color = color;
    vertex = vertex_xform * gl_Vertex;
}
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Phong Shading Recap

uniform vec3 eye_space_light;
varying vec3 vertex_normal;
varying vec4 vertex_color;
varying vec3 vertex;
const vec3 eye_space_eye = vec3(0);

void main(void)
{
    vec3 l = normalize(eye_space_light – vertex);
    vec3 v = normalize(eye_space_eye ­ vertex);
    vec3 h = normalize(l + v);
    float n_dot_l = dot(vertex_normal, l);
    vec4 diff = vertex_color * n_dot_l;
    float spec = pow(dot(n, h), 16.0);

    gl_FragColor = step(0.0, n_dot_l) *
        vec4(diff.xyz + vec3(spec), vertex_color.w);
}
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Surface-Space

⇨ From the point of view of the surface, what is the 
normal vector?

­ We'll call this surface-space
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Surface-Space

⇨ From the point of view of the surface, what is the 
normal vector?

­ We'll call this surface-space

­ Assuming the surface is flat, n
surf

 = (0, 0, 1)
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Surface-Space

⇨ If we know n
world

, can we create transformation 

that will generate n
surf

?

­ Not uniquely
­ An orthonormal basis requires three orthogonal, normalized 

vectors, but we only have one
­ If we have two we can generate the third

­ This is the same reason we need the “up” vector to create 
the camera look-at transform

­ If only we had another vector in plane...
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Surface-Space

⇨ Create a new vector, and call it the tangent
­ Either partial derivative of a Bézier patch can be used 

for t
surf

­ Usually ∂p/∂u is used

­ Knowing n
surf

 and t
surf

 is enough to create an 

orthonormal basis
­ This basis can transform any vector to surface-space 

from object-space
­ n

obj
 is an obvious choice

­ For lighting, v and l need to be in the same space as n

⇨ Because the tangent vector is used, surface-
space is sometimes called tangent-space
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Surface-Space

varying vec3 light_dir;
attribute vec3 tangent;
attribute vec3 normal;

void main(void)
{
    gl_Position = mvp * gl_Vertex;

    vec3 t = normal_xform * tangent;
    vec3 n = normal_xform * normal;
    mat3 tbn = mat3(t, n, cross(n, t));

    vec3 vert_pos = vec3(vertex_xform * gl_Vertex);
    vec3 light = eye_space_light ­ vert_pos;

    light_dir = normalize(light * tbn);
}
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Surface-Space

varying vec3 light_dir;
attribute vec3 tangent;
attribute vec3 normal;

void main(void)
{
    gl_Position = mvp * gl_Vertex;

    vec3 t = normal_xform * tangent;
    vec3 n = normal_xform * normal;
    mat3 tbn = mat3(t, n, cross(n, t));

    vec3 vert_pos = vec3(vertex_xform * gl_Vertex);
    vec3 light = eye_space_light ­ vert_pos;

    light_dir = normalize(light * tbn);
}

This actually calculates M
s

T
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Surface-Space

varying vec3 light_dir;
attribute vec3 tangent;
attribute vec3 normal;

void main(void)
{
    gl_Position = mvp * gl_Vertex;

    vec3 t = normal_xform * tangent;
    vec3 n = normal_xform * normal;
    mat3 tbn = mat3(t, n, cross(n, t));

    vec3 vert_pos = vec3(vertex_xform * gl_Vertex);
    vec3 light = eye_space_light ­ vert_pos;

    light_dir = normalize(light * tbn);
}

This actually calculates M
s

T

Remember: Mv = vMT
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Surface-Space

varying vec3 light_dir;
varying vec3 eye_dir;
varying vec4 vertex_color;

void main(void)
{
    vec3 l = normalize(light_dir);
    vec3 v = normalize(eye_dir);
    vec3 h = normalize(l + v);
    float n_dot_l = l.z;
    vec4 diff = vertex_color * n_dot_l;
    float spec = pow(h.z, 16.0);

    gl_FragColor = step(0.0, n_dot_l) *
        vec4(diff.xyz + vec3(spec), vertex_color.w);
}
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Surface-Space

varying vec3 light_dir;
varying vec3 eye_dir;
varying vec4 vertex_color;

void main(void)
{
    vec3 l = normalize(light_dir);
    vec3 v = normalize(eye_dir);
    vec3 h = normalize(l + v);
    float n_dot_l = l.z;
    vec4 diff = vertex_color * n_dot_l;
    float spec = pow(h.z, 16.0);

    gl_FragColor = step(0.0, n_dot_l) *
        vec4(diff.xyz + vec3(spec), vertex_color.w);
}

Remember: n is (0, 0, 1)!
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Surface-Space

⇨ What is b?
­ In the calculation: b = n × t
­ Correctly, this is the bi-tangent

­ Many places incorrectly call it the bi-normal
­ Either way, we'll just call it b

­ Generally easier and more efficient to compute this in 
a shader than supply it as an input

­ We cannot just use ∂p/∂v from from our surface evaluation 
because the two partial derivatives may not be orthogonal to 
each other!
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Surface-Space

⇨ What does this math headache gain us?
­ Just a trivial fragment shader optimization so far

­ Seems hardly worth it

­ What else?



© Copyright Ian D. Romanick 2010

12-January-2010

Bump Mapping

⇨ What if the surface isn't really flat or smoothly 
curved?

­ Just like few real surfaces have truly uniform color, 
few real surfaces have uniform normals

­ Use the same solution!
­ Store colors in an image → store normals in an image
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Normal Map Storage

⇨ Store the X, Y, and Z values of the surface-
space normals in the R, G, and B components

­ Since Z tends to be close to 1.0, these images tend to 
look very blue

Image from http://www.filterforge.com/filters/243-normal.html

http://www.filterforge.com/filters/243-normal.html
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Normal Map Storage

⇨ What is the range of colors in a texture?
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Normal Map Storage

⇨ What is the range of colors in a texture?
­ [0.0, 1.0]
­ We have to convert these to the [-1, 1] range desired 

for normal directions
­ Just convert X and Y... Z must be > 0, so just leave it
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Normal Map Storage

⇨ We don't even need Z
­ Z must always be > 0.0
­ Derive it from X and Y:
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Normal Map Storage

⇨ We don't even need Z
­ Z must always be > 0.0
­ Derive it from X and Y:

 x2
 y2

z2
=1.0

x2 y2z2=1.0
z2=1.0−x2− y2

z=1.0−x2
− y2
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Normal Map Storage

⇨ 2-component textures can be achieved in a 
couple ways:

­ Use GL_LUMINANCE_ALPHA
­ Some hardware doesn't really support this, so it will silently 

convert it to RGBA...making it bigger

­ Use GL_RG
­ Requires GL_ARB_texture_rg or OpenGL 3.0

­ Use GL_COMPRESSED_RED_GREEN_RGTC2_EXT
­ Requires GL_ARB_texture_compression_rgtc,  

GL_EXT_texture_compression_rgtc, or OpenGL 3.0

­ May add undesired compression artifacts
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Next week...

⇨ Render-to-texture
⇨ Environment mapping

­ Rendering to env maps

⇨ Improving the reflection model
­ Using env maps as better lights
­ Fresnel reflection

⇨ Read:
Michael Toksvig. “Mipmapping Normal Maps.”  

http://developer.nvidia.com/object/mipmapping_normal_maps.html

Real-Time Rendering 3rd Edition, chapter 13.1 and 13.2.

http://developer.nvidia.com/object/mipmapping_normal_maps.html
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Legal Statement

This work represents the view of the authors and does not necessarily 
represent the view of Intel or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other 
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service 
marks of others.
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