
CG Programming II – Term Project
Due on 03/18/2008 – Day of the final

For the term project you are tasked to implement one of the following projects. Each project has a milestone
that is due in class on 3/4/2008. This milestone will be graded.

Project #1 – Fins and Shells Fur

Implement “fins and shells” style fur with the full set of extensions detailed by Isidoro and Mitchell in “User
customizable real-time fur.” In addition, Gary Sheppard’s “Real-Time Rendering of Fur” contains numerous
useful implementation details that are missing from the Isidoro paper.

For class on 3/4/2008, have the following elements complete:

• Dynamically generate fur shell textures at program initialization.

– Fur must be colored from a base color (“albedo” in the Isidoro paper) texture. This texture may be
loaded from disk.

– Generate a per-shell texture that contains a value that determines whether or not that texel contains
a hair or not. In the initial implementation, you may want to disable mipmapping on this texture.

• Fur must be shaded as a factor of distance from the outermost layer of fur.

• Shells for straight hair must be implemented.

For class on 3/18/2008, have the following elements complete:

• Implement rendering of blended fins. It is advisable to implement fin rendering in several stages. While
developing the fir rendering code, it is advisable to only render the base shell. Doing so will make it much
easier to tell what is happening.

– Render fully extruded fins without the fin textures. Set the color to always be white.

– Implement alpha blending of fins. Architect this code so that it can be disabled easily. This will be
a helpful debugging aid later.

– Dynamically generate the fin textures and use them.

• Implement curved hairs with correct coloring. An additional “offset” texture is required per shell. This
offset texture contains the location, relative to the current texture coordinate, of the hair’s color in the
base hair color texture. This texture should be combined with the other per-shell texture. Store the
offsets in the red and green components, and store the hair mask in the blue component.

• Implement per-fragment fur lighting. In an additional per-shell texture, store the hair direction (tangent
vector) at that location. The information in this texture for shell N is the negative direction of the
information stored in the offset texture for shell N+1. The Z component of the hair direction depends on
the shell-to-shell spacing.

• Implement shell texture mipmapping. Leave this step until the very last.

Project #2 – Nonphotorealistic Rendering

Implement a toon-style nonphotorealistic shader and a Gooch-style technical illustration shader. A user
interface must be provided so that the user can switch between these two shaders at run-time.

For class on 3/4/2008, have the following elements complete:

• Implement 3-level, toon-style shading. The thresholds for light-dark and specular must be adjustable at
run-time. Provide a user interface to modify these values while the application is running.

• Implement Gooch-style warm-to-cool shading.

1



• With both shaders, draw all edges as a second pass. To implement this correctly, you will have to become
friends with glPolygonOffset.

For class on 3/18/2008, have the following elements complete:

• Implement correct “inking” of crease and silhouette edges. For the toon shader all inked edges should be
black. For the Gooch shader the crease edges should be white and the silhouette edges should be black.
Note that the sphere and torus models do not have any crease edges. This means that you will have to
come up with some additional models. Simple platonic solids are perfectly acceptable.

• Implement variable thickness edges. The thickness for creases and silhouettes do not need to be inde-
pendently adjustable. However, the thickness of all edges of a particular type should be consistent. The
thickness of the edges should decrease with object distance (i.e., be perspective correct).

2



Criteria Excellent Good Satisfactory Unacceptable
Completion Program correctly im-

plements all required
elements in a manner
that is readily appar-
ent when the program
is executed. User
interface is complete
and responsive to in-
put. Program doc-
uments user interface
functionality.

Program implements
all required elements,
but some elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Program implements
most required ele-
ments. Some of the
implemented elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Many required
elements are
missing. User
interface is in-
complete or is
not responsive
to input.

Correctness Program executes
without errors. Pro-
gram handles all
special cases. Pro-
gram contains error
checking code.

Program executes
without errors. Pro-
gram handles most
special cases.

Program executes
without errors. Pro-
gram handles some
special cases.

Program does
not execute due
to errors. Lit-
tle or no error
checking code
included.

Efficiency Program uses solution
that is easy to under-
stand and maintain.
Programmer has anal-
ysed many alternate
solutions and has cho-
sen the most efficient.
Programmer has in-
cluded the reasons for
the solution chosen.

Program uses an ef-
ficient and easy to
follow solution (i.e.,
no confusing tricks).
Programmer has con-
sidered alternate solu-
tion and has chosen
the most efficient.

Program uses a log-
ical solution that is
easy to follow, but it is
not the most efficient.
Programmer has con-
sidered alternate solu-
tions.

Program uses
a difficult
and inefficient
solution. Pro-
grammer has
not consid-
ered alternate
solutions.

Presentation &
Organization

Program code is for-
matted in a consistent
manner. Variables,
functions, and data
structures are named
in a logical, consistent
manner. Use of white
space improves code
readability.

Program code is
formatted in mostly
consistent with occa-
sional inconsistencies.
Variables, functions,
and data structures
are named in a logi-
cal, mostly consistent
manner. Use of white
space neither helps or
hurts code reability.

Program code is for-
matted with multi-
ple styles. Variables,
functions, and data
structures are named
in a logical but incon-
sistent manner. Use
of white space neither
helps or hurts code re-
ability.

Program code
is formatted
in an inconsis-
tent manner.
Variables, func-
tions, and data
structures are
poorly named.
Use of white
space hurts code
reability.

Documentation Code clearly and ef-
fectively documented
including descriptions
of all global variables
and all non-obvious lo-
cal variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the input
requirements and out-
put results.

Code documented
including descrip-
tions of most global
variables and most
non-obvious local
variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the
input requirements
and output results.

Code documented
including descriptions
of the most important
global variables and
the most important
local variables. The
specific purpose of
each data type is
noted. The spe-
cific purpose of each
function is noted.

No useful doc-
umentation ex-
ists.

This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens
University (http://educ.queensu.ca/ compsci/assessment/Bauman.html).

3


