
CG Programming II – Assignment #2 (enhanced env mapped specular)
Due on 02/05/2008

Starting with the code from assignment #1, add the following features:

• Add a normal map to the object. The normal map is to be implemented in surface-space.

normal maps can either be found on-line by searching or by converting a gray scale “height map” to a
normal map using Nvidia’s Photoshop plug-in.

http://developer.nvidia.com/object/photoshop dds plugins.html

• In assignment #1 the object rotated around it’s center, but not other motion was implemented. Add the
ability for the user to move around the object. Fix the point that is viewed at the center of the object,
but allow the user free movement using the arrow keys. Using gluLookAt is advisable.

• Implement prefiltered specular environment maps.

– Prefiltered environment maps are to be implemented using framebuffer objects.

– While the application is running, pressing the ‘s’ should decrease the specular exponent by some small,
fixed value. Likewise, pressing ‘S’ should increase the specular exponent by some small, fixed value.
This implies that it must be possible create an initial prefiltered environment at program initialization
and update that environment map later. This means that the original, unfiltered environment map
and the current prefiltered environment maps must both be kept in memory.

– The number of samples from the environment used to create the prefiltered environment map should
be selectable at compile-time.

• Implement irradiance maps. The irradiance map should be created in a similar manner as the prefiltered
environment map.

For extra credit, improve the the quality of the prefiltered environment maps and the irradiance map making
multiple passed. In the first pass sample the most important neighbor texels. In the successive passes, sample
gradually more distanct neighbor texels until the weight falls below some preset threshold.

1



Criteria Excellent Good Satisfactory Unacceptable
Completion Program correctly im-

plements all required
elements in a manner
that is readily appar-
ent when the program
is executed. User
interface is complete
and responsive to in-
put. Program doc-
uments user interface
functionality.

Program implements
all required elements,
but some elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Program implements
most required ele-
ments. Some of the
implemented elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Many required
elements are
missing. User
interface is in-
complete or is
not responsive
to input.

Correctness Program executes
without errors. Pro-
gram handles all
special cases. Pro-
gram contains error
checking code.

Program executes
without errors. Pro-
gram handles most
special cases.

Program executes
without errors. Pro-
gram handles some
special cases.

Program does
not execute due
to errors. Lit-
tle or no error
checking code
included.

Efficiency Program uses solution
that is easy to under-
stand and maintain.
Programmer has anal-
ysed many alternate
solutions and has cho-
sen the most efficient.
Programmer has in-
cluded the reasons for
the solution chosen.

Program uses an ef-
ficient and easy to
follow solution (i.e.,
no confusing tricks).
Programmer has con-
sidered alternate solu-
tion and has chosen
the most efficient.

Program uses a log-
ical solution that is
easy to follow, but it is
not the most efficient.
Programmer has con-
sidered alternate solu-
tions.

Program uses
a difficult
and inefficient
solution. Pro-
grammer has
not consid-
ered alternate
solutions.

Presentation &
Organization

Program code is for-
matted in a consistent
manner. Variables,
functions, and data
structures are named
in a logical, consistent
manner. Use of white
space improves code
readability.

Program code is
formatted in mostly
consistent with occa-
sional inconsistencies.
Variables, functions,
and data structures
are named in a logi-
cal, mostly consistent
manner. Use of white
space neither helps or
hurts code reability.

Program code is for-
matted with multi-
ple styles. Variables,
functions, and data
structures are named
in a logical but incon-
sistent manner. Use
of white space neither
helps or hurts code re-
ability.

Program code
is formatted
in an inconsis-
tent manner.
Variables, func-
tions, and data
structures are
poorly named.
Use of white
space hurts code
reability.

Documentation Code clearly and ef-
fectively documented
including descriptions
of all global variables
and all non-obvious lo-
cal variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the input
requirements and out-
put results.

Code documented
including descrip-
tions of most global
variables and most
non-obvious local
variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the
input requirements
and output results.

Code documented
including descriptions
of the most important
global variables and
the most important
local variables. The
specific purpose of
each data type is
noted. The spe-
cific purpose of each
function is noted.

No useful doc-
umentation ex-
ists.

This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens
University (http://educ.queensu.ca/ compsci/assessment/Bauman.html).

2


