CG Programming II – Assignment #2 (enhanced env
 mapped specular) Due on 02/05/2008

Starting with the code from assignment #1, add the following features:

- Add a normal map to the object. The normal map is to be implemented in surface-space.
- normal maps can either be found on-line by searching or by converting a gray scale "height map" to a normal map using Nvidia's Photoshop plug-in.

http://developer.nvidia.com/object/photoshop_dds_plugins.html

- In assignment #1 the object rotated around it's center, but not other motion was implemented. Add the ability for the user to move around the object. Fix the point that is viewed at the center of the object, but allow the user free movement using the arrow keys. Using gluLookAt is advisable.
- Implement prefiltered specular environment maps.
 - Prefiltered environment maps are to be implemented using framebuffer objects.
 - While the application is running, pressing the 's' should decrease the specular exponent by some small, fixed value. Likewise, pressing 'S' should increase the specular exponent by some small, fixed value. This implies that it must be possible create an initial prefiltered environment at program initialization and update that environment map later. This means that the original, unfiltered environment map and the current prefiltered environment maps must both be kept in memory.
 - The number of samples from the environment used to create the prefiltered environment map should be selectable at compile-time.
- Implement irradiance maps. The irradiance map should be created in a similar manner as the prefiltered environment map.

For extra credit, improve the quality of the prefiltered environment maps and the irradiance map making multiple passed. In the first pass sample the most important neighbor texels. In the successive passes, sample gradually more distanct neighbor texels until the weight falls below some preset threshold.

Criteria	Excellent	Good	Satisfactory	Unacceptable
Completion	Program correctly im-	Program implements	Program implements	Many required
	plements all required	all required elements,	most required ele-	elements are
	elements in a manner	but some elements	ments. Some of the	missing. User
	that is readily appar-	may not function	implemented elements	interface is in-
	is executed User	face is complete and	correctly User inter-	not responsive
	interface is complete	responsive to input	face is complete and	to input
	and responsive to in-	responsive to input.	responsive to input.	to input.
	put. Program doc-		I I I I I I I I I I I I I I I I I I I	
	uments user interface			
	functionality.			
Correctness	Program executes	Program executes	Program executes	Program does
	without errors. Pro-	without errors. Pro-	without errors. Pro-	not execute due
	gram handles all	gram handles most	gram handles some	to errors. Lit-
	special cases. Pro-	special cases.	special cases.	tle or no error
	checking code			included
Efficiency	Program uses solution	Program uses an ef-	Program uses a log-	Program uses
	that is easy to under-	ficient and easy to	ical solution that is	a difficult
	stand and maintain.	follow solution (i.e.,	easy to follow, but it is	and inefficient
	Programmer has anal-	no confusing tricks).	not the most efficient.	solution. Pro-
	ysed many alternate	Programmer has con-	Programmer has con-	grammer has
	solutions and has cho-	sidered alternate solu-	sidered alternate solu-	not consid-
	sen the most efficient.	tion and has chosen	tions.	ered alternate
	cluded the reasons for	the most encient.		solutions.
	the solution chosen			
Presentation &	Program code is for-	Program code is	Program code is for-	Program code
Organization	matted in a consistent	formatted in mostly	matted with multi-	is formatted
	manner. Variables,	consistent with occa-	ple styles. Variables,	in an inconsis-
	functions, and data	sional inconsistencies.	functions, and data	tent manner.
	structures are named	Variables, functions,	structures are named	Variables, func-
	in a logical, consistent	and data structures	in a logical but incon-	tions, and data
	space improves code	cal mostly consistent	of white space neither	structures are
	readability.	manner. Use of white	helps or hurts code re-	Use of white
		space neither helps or	ability.	space hurts code
		hurts code reability.		reability.
Documentation	Code clearly and ef-	Code documented	Code documented	No useful doc-
	fectively documented	including descrip-	including descriptions	umentation ex-
	including descriptions	tions of most global	of the most important	ists.
	or all global variables	variables and most	global variables and	
	cal variables The spe	variables The spe	local variables The	
	cific purpose of each	cific purpose of each	specific purpose of	
	data type is noted.	data type is noted.	each data type is	
	The specific purpose	The specific purpose	noted. The spe-	
	of each function is	of each function is	cific purpose of each	
	noted, as are the input	noted, as are the	function is noted.	
	requirements and out-	input requirements		
	put results.	and output results.		

This rubric is based loosely on the "Rubric for the Assessment of Computer Programming" used by Queens University (http://educ.queensu.ca/ compsci/assessment/Bauman.html).