
CG Programming I – Assignment #4 (per-fragment lighting and multi-texture)
Due on 11/27/2007

For this assignment, you will implement per-fragment lighting using texture combiners. This may be done
either as a stand-along program or as an addition to the 3D world of assigment #3.

• Draw at least one object with per-fragment specular lighting.

– Calculate per-vertex bitangent and normal vectors.

– Draw the normal vector and bitangent vector.

∗ It is sufficient to draw a simple line for each vector from the vertex. Each should be drawn in a
different color. While this may seem like a silly requirement, it is a powerful debugging aid.

– Calculate the per-vertex “surface-space” transformation.

∗ This implicitly requires that the normal and bitangent vectors be transformed to world-space.
Since these are vectors, the world-space translation is not applied, only the upper 3x3 portion of
the matrix. Refer to the book for more details.

– Calculate the per-vertex H vector.

∗ This implicitly requires that the vertex positions and the positions of the light be transformed
to world-space.

– Draw the H vector.

∗ It is sufficient to draw a simple line for this vector from the vertex. It should be drawn in a
different color from the normal or bitangent. I cannot over emphasise how useful this is as a
debugging aid.

– Transform the per-vertex H vector to surface space.

– Specify the transformed H vector as the vertex’s color.

∗ Remember: the components of the H vector have the range [-1, 1], but color components have
the range [0, 1].

∗ It should be apparent that traditional OpenGL lighting is disabled.

– Create a normal map texture.

∗ Either find a suitable normal map on the Internet or create a 1x1 texture with the color (0.5,
0.5, 1.0).

– Configure the texture combiners to calculate N.H.

∗ As described, this will use only one texture stage.

– Create a gloss map.

∗ Either find (or draw) a suitable gloss map on the Internet or create a 1x1 texture with the desired
specular color.

– Configure the texture combiners modulate the result of N.H with the value from the gloss map.

• The user should either be able to navigate around the object (i.e., the object is in the 3D world from
assignment #3) or the object should rotate around its center.

The following inputs must be implemented. In addition, the program must, in some way, communicate to
the user how to use it.

• Escape must terminate the program.

• Inputs must be implemented for movement (as in assignment #3) or an input must be implemented to
pause the animation of the object.

1



Criteria Excellent Good Satisfactory Unacceptable
Completion Program correctly im-

plements all required
elements in a manner
that is readily appar-
ent when the program
is executed. User
interface is complete
and responsive to in-
put. Program doc-
uments user interface
functionality.

Program implements
all required elements,
but some elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Program implements
most required ele-
ments. Some of the
implemented elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Many required
elements are
missing. User
interface is in-
complete or is
not responsive
to input.

Correctness Program executes
without errors. Pro-
gram handles all
special cases. Pro-
gram contains error
checking code.

Program executes
without errors. Pro-
gram handles most
special cases.

Program executes
without errors. Pro-
gram handles some
special cases.

Program does
not execute due
to errors. Lit-
tle or no error
checking code
included.

Efficiency Program uses solution
that is easy to under-
stand and maintain.
Programmer has anal-
ysed many alternate
solutions and has cho-
sen the most efficient.
Programmer has in-
cluded the reasons for
the solution chosen.

Program uses an ef-
ficient and easy to
follow solution (i.e.,
no confusing tricks).
Programmer has con-
sidered alternate solu-
tion and has chosen
the most efficient.

Program uses a log-
ical solution that is
easy to follow, but it is
not the most efficient.
Programmer has con-
sidered alternate solu-
tions.

Program uses
a difficult
and inefficient
solution. Pro-
grammer has
not consid-
ered alternate
solutions.

Presentation &
Organization

Program code is for-
matted in a consistent
manner. Variables,
functions, and data
structures are named
in a logical, consistent
manner. Use of white
space improves code
readability.

Program code is
formatted in mostly
consistent with occa-
sional inconsistencies.
Variables, functions,
and data structures
are named in a logi-
cal, mostly consistent
manner. Use of white
space neither helps or
hurts code reability.

Program code is for-
matted with multi-
ple styles. Variables,
functions, and data
structures are named
in a logical but incon-
sistent manner. Use
of white space neither
helps or hurts code re-
ability.

Program code
is formatted
in an inconsis-
tent manner.
Variables, func-
tions, and data
structures are
poorly named.
Use of white
space hurts code
reability.

Documentation Code clearly and ef-
fectively documented
including descriptions
of all global variables
and all non-obvious lo-
cal variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the input
requirements and out-
put results.

Code documented
including descrip-
tions of most global
variables and most
non-obvious local
variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the
input requirements
and output results.

Code documented
including descriptions
of the most important
global variables and
the most important
local variables. The
specific purpose of
each data type is
noted. The spe-
cific purpose of each
function is noted.

No useful doc-
umentation ex-
ists.

This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens
University (http://educ.queensu.ca/ compsci/assessment/Bauman.html).

2


