
CG Programming I – Assignment #3 (texture world)
Due on 11/13/2007

For this assignment, you will implement a simple 3D world. The world will consist of a ground plane and
several objects scattered around the plane. The user will be able to move around the ground plane.

• Draw a ground plane.

– The ground plane should be at least 100x100 units, assuming that the typical object is 1x1x1 units.

– The ground plane should be textured.

– Correct lighting of the ground plane requires that it be made from numerous smaller polygons in a
grid pattern. Either GL QUAD STRIP or GL TRIANGLE STRIP must be used for this purpose.

• Draw multiple objects.

– Each object should be animated, but may remain generally stationary (e.g., the object rotates around
its center, the object moves up and down, etc.).

– The objects must be 3D dimensional.

– The objects must be lit by at least one light source.

– The objects must be colored.

• The user can navigate the world.

– Directional movement (i.e., forward, backward, strafe left, strafe right) and rotational movement (i.e.,
turn left and turn right) must be implemented. Using W-A-S-D for movement and Q-E for turning
is recommended, but not required.

– The user’s movement should be constrained to the region of the ground plane.

• Light objects in the world.

– At least one light source, which follows the user (i.e., is located at some constant position in eye-space)
must be implemented.

– If additional lights are implemented, they should be visually represented.

The following inputs must be implemented. In addition, the program must, in some way, communicate to
the user how to use it.

• Escape must terminate the program.

• Inputs must be implemented for directional movement.

• Inputs must be implemented for rotational movement.

Code will be provided for loading texture files.
Objects in the environment may be platonic solids from the previous assignment or other objects of your

choosing.
Collision detection (i.e., preventing the user from moving through objects) need not be implemented. In

future assignments where this is required, additional code will be provided.
Extra credit will be given for implementing shadows projected on the ground plane.
Extra credit will also be given for implementing a level-of-detail effect for the ground plane. The ground

plane is made from numerous small polygons. There should be more polygons close to the viewer, and fewer
(larger) polygons farther away. Simplicity is the key here. To show that LOD is being used, there should be
way to toggle normal rendering of the ground plane and wire-frame rendering of the ground plane.

1



Criteria Excellent Good Satisfactory Unacceptable
Completion Program correctly im-

plements all required
elements in a manner
that is readily appar-
ent when the program
is executed. User
interface is complete
and responsive to in-
put. Program doc-
uments user interface
functionality.

Program implements
all required elements,
but some elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Program implements
most required ele-
ments. Some of the
implemented elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Many required
elements are
missing. User
interface is in-
complete or is
not responsive
to input.

Correctness Program executes
without errors. Pro-
gram handles all
special cases. Pro-
gram contains error
checking code.

Program executes
without errors. Pro-
gram handles most
special cases.

Program executes
without errors. Pro-
gram handles some
special cases.

Program does
not execute due
to errors. Lit-
tle or no error
checking code
included.

Efficiency Program uses solution
that is easy to under-
stand and maintain.
Programmer has anal-
ysed many alternate
solutions and has cho-
sen the most efficient.
Programmer has in-
cluded the reasons for
the solution chosen.

Program uses an ef-
ficient and easy to
follow solution (i.e.,
no confusing tricks).
Programmer has con-
sidered alternate solu-
tion and has chosen
the most efficient.

Program uses a log-
ical solution that is
easy to follow, but it is
not the most efficient.
Programmer has con-
sidered alternate solu-
tions.

Program uses
a difficult
and inefficient
solution. Pro-
grammer has
not consid-
ered alternate
solutions.

Presentation &
Organization

Program code is for-
matted in a consistent
manner. Variables,
functions, and data
structures are named
in a logical, consistent
manner. Use of white
space improves code
readability.

Program code is
formatted in mostly
consistent with occa-
sional inconsistencies.
Variables, functions,
and data structures
are named in a logi-
cal, mostly consistent
manner. Use of white
space neither helps or
hurts code reability.

Program code is for-
matted with multi-
ple styles. Variables,
functions, and data
structures are named
in a logical but incon-
sistent manner. Use
of white space neither
helps or hurts code re-
ability.

Program code
is formatted
in an inconsis-
tent manner.
Variables, func-
tions, and data
structures are
poorly named.
Use of white
space hurts code
reability.

Documentation Code clearly and ef-
fectively documented
including descriptions
of all global variables
and all non-obvious lo-
cal variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the input
requirements and out-
put results.

Code documented
including descrip-
tions of most global
variables and most
non-obvious local
variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the
input requirements
and output results.

Code documented
including descriptions
of the most important
global variables and
the most important
local variables. The
specific purpose of
each data type is
noted. The spe-
cific purpose of each
function is noted.

No useful doc-
umentation ex-
ists.

This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens
University (http://educ.queensu.ca/ compsci/assessment/Bauman.html).

2


