
Data structures & Algorithms for Geometry
Assignment #3 (3D Convex Hull)
Part 1 due on 11/10/2007, part 2 due on 11/17

This assignment will be completed in two parts. In the first part you will implement and test a data structure
for storing and manipulating mesh data. In the second part you will use that data structure to implement a
3D convex hull algorithm.

For part 2, additional code will be provided to visualize the generated hull. It is very important for your
code to conform to the specified interfaces. Otherwise, it will not work within my testing framework or with
the visualization code.

• Part 1

– Implement a data structure for storing and manipulating mesh data. Several acceptable data struc-
tures were covered in class on 10/27. Code for a mesh and polygon base classes will be provided.

– For the mesh class, implement the following:

∗ an STL-style iterator that will visit all of the polygons stored in the mesh.
∗ an add polygon member function
∗ a remove polygon member function
∗ a constructor that takes four points as parameters.

– For the polygon class, implement the following:

∗ an STL-style iterator that will visit all of the points that make up the polygon.
∗ a plane equation method to get the plane equation for the polygon.
∗ a tesselate method that divides the polygon in the n triangles, where n is the number of edges.

This method takes a point as a parameter. The new triangles are made of the new point and
the two points on each edge of the original triangle.

• Part 2

– Use the mesh data structure from part 1 to implement a 3D convex hull algorithm.

– Validate the implemeted hull algorithm with a series of tests. At a minimum the following tests must
be implemented:

∗ Validate that the generated hull is convex. One way to do this is by checking the angle between
the normals of surfaces that share an edge.

∗ Validate that all points are inside the hull. One way to do this is by checking that all points
are in the negative half-space of all polygons. The plane equation method will likely be useful
here.

1



Criteria Excellent Good Satisfactory Unacceptable
Completion Program correctly im-

plements all required
elements in a manner
that is readily appar-
ent when the program
is executed. User
interface is complete
and responsive to in-
put. Program doc-
uments user interface
functionality.

Program implements
all required elements,
but some elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Program implements
most required ele-
ments. Some of the
implemented elements
may not function
correctly. User inter-
face is complete and
responsive to input.

Many required
elements are
missing. User
interface is in-
complete or is
not responsive
to input.

Correctness Program executes
without errors. Pro-
gram handles all
special cases. Pro-
gram contains error
checking code.

Program executes
without errors. Pro-
gram handles most
special cases.

Program executes
without errors. Pro-
gram handles some
special cases.

Program does
not execute due
to errors. Lit-
tle or no error
checking code
included.

Efficiency Program uses solution
that is easy to under-
stand and maintain.
Programmer has anal-
ysed many alternate
solutions and has cho-
sen the most efficient.
Programmer has in-
cluded the reasons for
the solution chosen.

Program uses an ef-
ficient and easy to
follow solution (i.e.,
no confusing tricks).
Programmer has con-
sidered alternate solu-
tion and has chosen
the most efficient.

Program uses a log-
ical solution that is
easy to follow, but it is
not the most efficient.
Programmer has con-
sidered alternate solu-
tions.

Program uses
a difficult
and inefficient
solution. Pro-
grammer has
not consid-
ered alternate
solutions.

Presentation &
Organization

Program code is for-
matted in a consistent
manner. Variables,
functions, and data
structures are named
in a logical, consistent
manner. Use of white
space improves code
readability.

Program code is
formatted in mostly
consistent with occa-
sional inconsistencies.
Variables, functions,
and data structures
are named in a logi-
cal, mostly consistent
manner. Use of white
space neither helps or
hurts code reability.

Program code is for-
matted with multi-
ple styles. Variables,
functions, and data
structures are named
in a logical but incon-
sistent manner. Use
of white space neither
helps or hurts code re-
ability.

Program code
is formatted
in an inconsis-
tent manner.
Variables, func-
tions, and data
structures are
poorly named.
Use of white
space hurts code
reability.

Documentation Code clearly and ef-
fectively documented
including descriptions
of all global variables
and all non-obvious lo-
cal variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the input
requirements and out-
put results.

Code documented
including descrip-
tions of most global
variables and most
non-obvious local
variables. The spe-
cific purpose of each
data type is noted.
The specific purpose
of each function is
noted, as are the
input requirements
and output results.

Code documented
including descriptions
of the most important
global variables and
the most important
local variables. The
specific purpose of
each data type is
noted. The spe-
cific purpose of each
function is noted.

No useful doc-
umentation ex-
ists.

This rubric is based loosely on the “Rubric for the Assessment of Computer Programming” used by Queens
University (http://educ.queensu.ca/ compsci/assessment/Bauman.html).

2


