
Kernel GPU API and radeon KMS status

Jerome Glisse

February

Jerome Glisse - Kernel GPU API and radeon KMS status 1/31

Outline

KMS radeon status

radeon command processor

State atoms

Jerome Glisse - Kernel GPU API and radeon KMS status 2/31

Big fella

Doesn’t do coffee yet ...

I 70 kloc (2 times bigger than Intel)

I Biggest driver in the whole Linux kernel
tree ?

I More than 9 differents GPU family
(R1XX, R2XX, R3XX, RS4XX, R4XX, R5XX,

RS6XX, R6XX, RS7XX, R7XX, RS8XX)

I Several different ASIC per family

I Everybody mess with the GPU (BIOS,
GPU BIOS, ACPI, ...)

Jerome Glisse - Kernel GPU API and radeon KMS status 3/31

Small computer

More complexe than other piece of hw
I Memory controller

I Command processor

I Clock

I GART

I PLL

I Encoder (LVDS, DVI, HDMI, DisplayPort, ...)

I ...

Jerome Glisse - Kernel GPU API and radeon KMS status 4/31

Future features

New features
I Support for unmappable VRAM (PCI BAR & CPU)

I R8xx family support (Evergreen)

I Use of PM ops for better suspend/hibernate support

I Power management

I HDMI audio for R7XX/R8XX ?

I Improved GPU lockup recording

Code cleanup
I Better fence for improved lockup detection

I Use union to separate asic specific datas

I Better message print for multi-gpu configuration

Jerome Glisse - Kernel GPU API and radeon KMS status 5/31

Issues

Most common issues
I Mode detection issue (no EDID or broken

EDID)

I PLL issues especialy laptop

I Suspend/Resume issues

I ACPI/BIOS interactions issues

I Memory fragmentation & cs issues

I AGP related issues

I GPU lockup

Jerome Glisse - Kernel GPU API and radeon KMS status 6/31

GPU lockup

Several possible root
I Timing issue with the bus

I Access to invalid address on the bus

I Invalid/Incorrect command stream issues

I Overheating leading to GPU lockup ?

I Bad VRAM ... memtest for VRAM

Hard to fix
I Capture invalid/incorrect command stream. Detecting it ?

I Find errata for timing issue ? Issue with hw manufacturer ...

I Better testing of memory controller setup so we can
understand how invalid bus address happens (corrupted GART
entry ?).

Jerome Glisse - Kernel GPU API and radeon KMS status 7/31

radeon command processing overview

command processor
I reads command from the ring buffer

I each entry follow a common format: packet (PKT)

I a special packet allow the cp to fetch command from another
buffer called indirect buffer (IB)

I in the end all command can be derived into register write (CP
translates packet into register write)

Jerome Glisse - Kernel GPU API and radeon KMS status 8/31

radeon command processing overview

Jerome Glisse - Kernel GPU API and radeon KMS status 9/31

Packet

Packet type
I Type 0 write contiguous registers

I Type 1 weird registers write

I Type 2 NOP

I Type 3 special packet

Packet type 3
I each op is dedicated to one specific aspect of the states

I packet3 are translated into register write by the CP

I easier to check, fixed ordering of values

Jerome Glisse - Kernel GPU API and radeon KMS status 10/31

KMS userspace command submission API: cs

Userspace
(X driver, mesa GL driver, ...)

libdrm_radeon
(helper to abstract kernel API)

CS ioctl
(parse userspace parameter)

asic specific parser
(parse command stream)

Rendering command
(draw triangle, square...)

CP
(parse command &

execute them)

Command stream or cs
I buffer filled by userspace with

packets

I kernel parse this buffer for
security purpose and relocation

I if buffer is valid kernel schedule
the buffer as an IB by writting
the special packet 3 into the ring

Jerome Glisse - Kernel GPU API and radeon KMS status 11/31

Building packet is not rocket science

It’s time we face reality, my friends...
We’re not exactly rocket scientists

Bottom line
I Packet packing is simple (bytes

shifting & oring)

I Core driver don’t need to bother

I Duplicate work packing in
userspace, unpacking in kernel
space

I Kernel can do it

Jerome Glisse - Kernel GPU API and radeon KMS status 12/31

States split up

Breaking into pieces
I Grouping GPU states into pieces

I Try matching the hw grouping
(registers holding different states
together)

I Try to match Gallium3D states
(src/gallium/include/p states.h)

Jerome Glisse - Kernel GPU API and radeon KMS status 13/31

Gallium3D theory

Create, bind, profit, unbind
I States atom regroup different states related to the same

aspect (blending, zbuffer, stencil, ...)

I Create a states atom
texture, vbo, blend configuration, ...

I Bind a group of states & perform rendering

I Unbind, rebind, render and profit

Why it’s good ?
I Most of the states stays alive during long period of time

I Would be nice to validate once and reuse

Jerome Glisse - Kernel GPU API and radeon KMS status 14/31

Surface states atom

Surface
I size width & height

I layout (tiling, ...)

I usage (texture, renderbuffer, vertex, index ...)

struct pipe_surface

{

struct pipe_reference reference;

enum pipe_format format; /**< PIPE_FORMAT_x */

unsigned width; /**< logical width in pixels */

unsigned height; /**< logical height in pixels */

unsigned layout; /**< PIPE_SURFACE_LAYOUT_x */

unsigned offset; /**< offset from start of buffer, in bytes */

unsigned usage; /**< PIPE_BUFFER_USAGE_* */

unsigned zslice;

struct pipe_texture *texture; /**< texture into which this is a view */

unsigned face;

unsigned level;

};

Jerome Glisse - Kernel GPU API and radeon KMS status 15/31

Blending states atom

Blending
I logcial operation

I dithering

I per render target blend information

struct pipe_rt_blend_state {

unsigned blend_enable:1;

unsigned rgb_func:3; /**< PIPE_BLEND_x */

unsigned rgb_src_factor:5; /**< PIPE_BLENDFACTOR_x */

unsigned rgb_dst_factor:5; /**< PIPE_BLENDFACTOR_x */

unsigned alpha_func:3; /**< PIPE_BLEND_x */

... };

struct pipe_blend_state {

unsigned independent_blend_enable:1;

unsigned logicop_enable:1;

unsigned logicop_func:4; /**< PIPE_LOGICOP_x */

unsigned dither:1;

struct pipe_rt_blend_state rt[PIPE_MAX_COLOR_BUFS];

};

Jerome Glisse - Kernel GPU API and radeon KMS status 16/31

Vertex buffer states atom

Vertex buffer
I num of vertices

I stride between element

I one pipe vertex buffer per attributes (pos, color, textures, ...)

struct pipe_vertex_buffer {

unsigned stride; /**< stride to same attrib in next vertex, in bytes */

unsigned max_index; /**< number of vertices in this buffer */

unsigned buffer_offset; /**< offset to start of data in buffer, in bytes */

struct pipe_buffer *buffer; /**< the actual buffer */

};

Jerome Glisse - Kernel GPU API and radeon KMS status 17/31

”True” GPU states

Close to metal ... or silicium
I Use GPU register packing

I Field related to same aspect are often grouped tightly in a
small number of registers.

I For instance color control states :

struct drm_r600_cb_cntl {

u32 cb_target_mask;

u32 cb_shader_mask;

u32 cb_clrcmp_control;

u32 cb_clrcmp_src;

u32 cb_clrcmp_dst;

u32 cb_clrcmp_msk;

u32 cb_color_control;

};

Jerome Glisse - Kernel GPU API and radeon KMS status 18/31

States atom creation

Building it for the GPU

I Each states atom is selfcontained (all information necessary
are provided at creation)

I Perform various check :
I size of buffer used (for render buffer with * height * bpp, ...)
I is configuration is legal for the GPU
I ...

I Build packets which correspond to the states

I Save the packets so later on batch scheduler can use them

Jerome Glisse - Kernel GPU API and radeon KMS status 19/31

Batch

How to render ?
I Submit a batch which has ID of all GPU states

struct drm_r600_batch {

struct radeon_atom *vs_constants;

struct radeon_atom *ps_constants;

struct radeon_atom *blend;

struct radeon_atom *cb;

struct radeon_atom *cb_cntl;

struct radeon_atom *pa;

struct radeon_atom *tp;

struct radeon_atom *vport;

struct radeon_atom *db;

struct radeon_atom *db_cntl;

struct radeon_atom *vgt;

struct radeon_atom *spi;

struct radeon_atom *sx;

struct radeon_bo *indices;

unsigned num_indices;

};

Jerome Glisse - Kernel GPU API and radeon KMS status 20/31

Batch scheduler

Avoiding reprogramming states
I Program a given states only if GPU was using different one

I Do buffer validation and relocation

I Fill command buffer

I Flush command buffer once no more batch can be queue

I Compute how much GPU memory the command buffer need

I Flush command buffer when there isn’t enough GPU space for
next batch

I For programming GPU use the packets build at states atom
creation

Jerome Glisse - Kernel GPU API and radeon KMS status 21/31

States atom, adding fields

There is no trick ...
I Each states atom has a uniq type ID

I Add a new type ID

I Old userspace can continue to use previous states atom type

I Could mix old states atom types & new one

I Mixing render less efficient same states detections

struct drm_r600_cb_cntl_tropbientropnouveau {

u32 cb_target_mask;

u32 cb_shader_mask;

...

u32 unknown_register_qui_tue;

};

Jerome Glisse - Kernel GPU API and radeon KMS status 22/31

Where should we do that ?

I States atom creation & validation can only happen in kernel

How to store states ?
I It can takes a lot of memory.

I Memory should be accounted as process’s memory

I Forbid process to overwrite it

Plans
I Building kernel API is time consuming

I Kernel API are frozen once released

I We want somethings now that can be refined before going
into the kernel

Jerome Glisse - Kernel GPU API and radeon KMS status 23/31

Doing it on top of cs ioctl

What’s good for
I No ugly command size prediction like in current mesa driver

I No cumberstone BO accounting for flush

I Core driver can focus on building GPU states

Jerome Glisse - Kernel GPU API and radeon KMS status 24/31

Command size prediction

Command size prediction today
I Cumberstone

I Easily breakable when adding or moving states

I Driver writer has to worry about it

I Hard for the driver to avoid state reprogramming duplication

Command size prediction tomorrow
I Each batch has a know command size

I Avoid reprogramming same state in same cs

I Easy to remove a batch from a cs to another cs (forced flush)

I Core driver don’t worry about that, it builds states and send
batch

Jerome Glisse - Kernel GPU API and radeon KMS status 25/31

Buffer object accounting & flushing

Buffer object accounting & flushing today
I Cumberstone

I Driver has to check over and over if it needs to flush cs

Buffer object accounting & flushing tomorrow
I Easy for the batch scheduler to count size needed for all the

buffer of a cs

I Easy for the batch scheduler to flush and put next batch into
a new cs

Jerome Glisse - Kernel GPU API and radeon KMS status 26/31

So you get free ticket to the moon ?

Divide and conquer

States atom and batch allow to divide the problem

I Core driver build GPU states

I Batch scheduler deals with flushing and states emissions
optimization

Each part has its own problem to solve: easier, simpler, cleaner

Drawbacks/shortcoming ?

I None, i am biased ;)

Jerome Glisse - Kernel GPU API and radeon KMS status 27/31

But R100/R200 states thingy was a disaster !

Too much too often
I All the states were in a single structure

I Had to reemit all the states all the times (each ioctl)

I Each draw command needed full states reemissions

Not the same

States atom presented here doesn’t follow this broken design.

I Small number of states per atom
I Each states atom as a uniq ID allow :

I States atom easily replaced by new one (adding new fields)

I Batch several rendering in one ioctl while allowing changing as
little states as possible between the differents rendering

Jerome Glisse - Kernel GPU API and radeon KMS status 28/31

What’s coming next ?

Plans
I Finish up r600winsys (nearly fully done)

I Do a quick gallium3d skeleton driver able to render tri-flat

I Plugin a shader compiler -> glxgears stepstone

I Plugin texture & sampler -> quake3 stepstone

I Refine states split up, try to optimize things a bit

I Starts playing with kernel implemented states and benchmark
to see if it is worth to put it in the kernel for performances

I Refine the Gallium3D driver to support all the features
(multi-buffer rendering, hyperz, tiling, ...)

I Do coffee somewhere between those steps ...

Jerome Glisse - Kernel GPU API and radeon KMS status 29/31

That’s all Folks

Jerome Glisse - Kernel GPU API and radeon KMS status 30/31

	KMS radeon status
	radeon command processor
	State atoms

