

CPU, memory,
latency

profiling and optimizing
GStreamer

Edward Hervey
Senior Multimedia Architect
edward@collabora.com
Gstreamer Conference 2012

● No, I'm not giving this talk because
I'm a gentoo user

● No, I will not bore you with -funroll-
loops CFLAGS

Goal

● “Make GStreamer as efficient as
possible”

 lowest-overhead as possible
 Make it possible to leverage as much as

possible from the underlying
hardware/software

Why is it needed ?
● We're a framework

 Initial goal is to make sure as many use-
cases as possible are doable with the
provided API/design

 Secondary goal is to make sure they can be
done as efficiently as possible

● We can't test/profile all usages
 Experience/Usage helps us improve GST

● What impacts performance
● How to profile it
● Tools available
● Optimizing
● Examples
● Lessons learnt

Performance
● Issues can appear in a variety of way

 CPU
 Memory
 Latency (internal and external)
 I/O

● First goal is to understand and track
those metrics

Metric 1 : CPU
1. Useless computation

 Codepaths that could be avoided
 Codepaths that are repeated
 Computing that could be delayed or be made

asynchronous

2. Algorithmic improvements

3. Better usage of CPU (SIMD, ...)
● Note : Not only main CPU

Metric 2 : Memory
1. High heap/stack usage

 Problem for tight memory platforms
 Hit swap on more powerful systems
 You could run more on the same platform

2. Memory re-use
 Avoid memcpy
 Bandwith issues

Metric 3 : Latency
● Internal Latency

 Need future data to output past data
 Waiting for preroll
 Accurate latency reporting
 Critical for best live playback

● External Latency
 Storage/network/hardware latency

Metrics summary
● They are varied
● They impact each other

 Memcpy => bandwith/io/latency/cpu
 Async computation => latency/memory

● Let's measure them !

Profiling
1. Measuring those various metrics

2. Pinpoint the culprit
• (Have a reproducible synthetic test)

3. Optimize

4. GOTO 1
➔ Prove you have improved the situation

Methodology
● Just like for debugging

 Smallest synthetic test that reproduces the
same behavior.

● pinpoint what element/file is the culprit
● You will be running it many times

● Be careful to impact of profiling tools
 Changes delays/races/...
 Use options wisely

Tools
● Time

 Trivial to use
 Detect overall CPU regressions quickly
 Low/zero impact
 Low amount of information

● Top
 Low/zero impact
 Memory/cpu usage over time

Tools
● GST_DEBUG logs

 (insanely) verbose
 Plenty of metrics over time
 You can add your own metrics
 Medium to high impact

● Oprofile
 Low-ish impact
 No changes required

Tools
● Valgrind (here be dragons !)

 Memcheck (memory usage)
 Massif (heap profiling)
 Callgrind/cachegrind
 Pro: very verbose and detailed
 Con: high overhead

A picture is worth...
● Use existing Uis

 Kcachegrind
● callgrind, cachegrind, but also other inputs

 Massif-visualizer
 gst-debug-log-viewer

● Create your own
 matplotlib

Optimizing
● You know where your bottleneck,

hotspot is, you're essentially done \o/
● Not going to go down in cpu/asm

improvements
 Let me google that for you ...

● A lot can be done by high/medium
level improvements

CPU examples
● G_DISABLE_CAST_CHECKS

 Expensive, detected through profiling
 Enabled in releases

● Don't enforce behavior on caller
 1.0 caps function that don't require writable

caps
● If needed it will make a copy

CPU examples
● Give more hints/context

 Might require API change !
 query_caps(pad, filter) in 1.0

● Delay processing to later on
 Downstream element could do the

processing (1.0)
 Lazy index parsing (qtdemux/avidemux)

CPU examples
● Expensive GstCaps check when

linking
 Exponential on number of elements
 “Does this square plug fit in this round

socket” is enough at link time (i.e. templates)
 Check details at stream time

● GES timeline startup on N9 => 20+
seconds down to less than 1.

CPU examples
● Other ideas

 Disable decoding for streams not used
 Disable fetching data for streams not used

● And plenty more that don't require
low-level optimizations!

Memory examples
● Decode into display memory

 0.10 bufferalloc
 1.0 GstMemory, pools,

ALLOCATION_QUERY

● Avoid/reduce copies
 References when possible
 1.0 GstMemory re-used in multiple buffers

Latency examples
● Avoid using certain formats in live

 B-frames

● Limit latency in some elements
 audioresample ?

● Playback/seeking
 Avoid doing small sparse reads
 Seek to the optimal position (ex: asfdemux)
 Live mpeg-ts demuxing (Broadcast DVB)

Last thing about
optimization...

● ALWAYS RE-RUN PROFILING
● ENSURE YOU HAVE IMPROVED

THE SITUATION
● CHECK ON OTHER FILES/CASES

 You might have improved one case...
 ... and made all the other worse

Lessons learnt
● Know and understand the code you

are trying to optimize
 Have a good idea of what the code should

be doing

● Optimizing one bottleneck/hotspot will
uncover the next one

 Speed up data passing ...
 ... and discover GTypeInstance

creation/destruction isn't efficient :(

Lessons learnt
● Assume dependencies aren't the

bottleneck...
 ... but don't ignore them either (Glib anyone ?)

● Check your optimization doesn't
impact other cases

 Re-try, re-try, re-try, get metrics
 Ex: gst-discoverer <*.filetype>

Lessons learnt
● Preemptive optimization is mostly evil

 Get things working first
 You most likely don't know all usage
 It'll be easier to optimize later on

Bored ?
● Profile your use-cases, files, ...
● You'll learn a lot
● You might find more things to optimize

Thankyou
● Any questions ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

