
X Presentation and

Synchronization

Synchronization Problems

There is no defined ordering between X rendering

and direct rendering; it is left up to the application

This synchronization becomes unrealistic between

applications when applications aren't aware of each

other

GLX RenderingGLX Rendering

X RenderingX Rendering

VDPAU RenderingVDPAU Rendering

Synchronization Solutions

A new type of operation is needed to synchronize

multiple rendering streams: X Sync object

Inspired by GL sync objects

Contains nothing but binary state: triggered, not

triggered

Rendering streams can be stalled until sync object

reaches the triggered state

Basic Sync Object Example

/* Init some objects */

Sync sync = XCreateSyncObject();

Window win1 = XCreateWindow();

Window win2 = XCreateWindow()

fork();

/* Parent process */

XWaitSync(sync);

/*

* X rendering from here on

* will be deferred until

* the sync is triggered.

*/

CopyWinContents(win2, win1);

/* Child process */

DrawToWin(win1);

/*

* Set sync state to

* triggered

*/

XTriggerSync(sync);

Sync Object Ordering

This is the most important property of sync objects

Sync object operations (Wait and Trigger) happen in-

band with the rendering stream they are executed in

This is important for cross-API usage when each API

has its own rendering stream

More Complex Uses

Sync objects can be exported to other APIs

GLX/GL: X sync object <-> GLsyncARB

VDPAU

Extended sync objects can be triggered by various

events

VSYNC on monitor X

Frame number N on monitor X

Timer interrupts

Operating System events, e.g., File I/O completion

others

One Important Problem Solved

Compiz compositing before X or other GL

application rendering completes can be safely and

efficiently avoided

X can expose sync objects that trigger only after

rendering related to a given damage event has

completed

Compiz creates X sync objects of this type, imports

them to GLsyncARB objects, and prefaces its

compositing with waits on them

Presentation Problems

Linux desktop graphical complexity has grown

exponentially in recent years, but presentation

mechanisms have not kept up

X has no real presentation

control mechanism

GLX presentation mechanisms

all assume windows are

onscreen

GLX auxiliary buffers aren’t

accessible in other X

extensions

Presentation Problems (Cont.)

Precise control over when presentation occurs, relative to

system and hardware events

Feedback on where and when presentation occurred

Feedback on when buffers are in use by presentation

All these still need to work even when presentation is controlled

by a composite manager rather than the X server or a direct

rendering client

Advanced presentation mechanisms need to provide

the following:

Presentation Solution (Part 1)

Easy; use sync objects

Note that sync objects can be stacked:

// Wait for a timer, then for the next vblank

// before compositing

XWaitSync(minTimeSync);

XWaitSync(vblankSync);

XComposite();

How do we ensure X operations happen at particular

times relative to other operations?

Presentation Solution (Part 2)

Give X explicit multi-buffering:

Build on the composite framework

Allow application to explicitly allocate as many backing

pixmaps as it wants

Each window may now have MULTIPLE backing pixmaps

In this situation, X will redirect the window when first

backing pixmap is allocated, just as it would if a composite

manager redirected it

The application may then present its contents simply by

setting one of its backing pixmaps to the “front” pixmap

How can explicit presentation be added to X?

What about GLX?

New way to create GLX drawable from an X window

with N X-managed back buffers

Porting existing applications is easy:

glXSwapBuffers(win) -> glXPresentBuffer(win, buf)

glXSwapInterval() -> Use GL/X sync objects

glDrawBuffers() -> ???

New GLX extensions are needed

What about Composite Managers?

Presentation requests are forwarded to the current

composite manager, if any

If not, automatic compositing is performed

When did everything happen?

The presentation command can be preceded by a

sync wait

Presentation commands can also optionally take a

sync object as an argument

The sync object would be triggered when the

presentation was visible, either by the composite

manager or the X server

Add new state to sync objects: Triggered timestamp

Questions?

