
Data General / MIT . . ConsortiumData General / OMRON / MIT . . Consortium

Component Design Specification
for the
MIT Multi-Threaded X Window
Sample Server

Mike Haynes Hiroya Chiba
Paul Layne Akio Harada
Rick Potts Hidenobu Kanaoka
John A. Smith Takayuki Miyake

Data General Corporation Omron Corporation
62 T.W. Alexander Drive
Research Triangle Park, NC 27709 Kyoto, Japan

in association with
MIT X Consortium
545 Technology Square
Cambridge, MA 02139

Version 5.0
April 15, 1993

Permission to copy, modify, create derivative works, and to distribute this document and copies,
modifications and derivative works thereof, is hereby granted without fee, provided that the copyright legend
hereafter stated and this notice appear in all such copies, modifications and derivative works, and that neither
the name OMRON or DATA GENERAL be used in advertising or publicity pertaining to distribution of any
such copy, modification or derivative work without specific, written prior permission of the party whose
name is to be used.

This work is provided “as is”. The Authors do not warrant the accuracy, completeness or utility of this work,
and disclaim any liability arising from reliance upon it. No representation or other affirmation of fact
contained in this document, including but not limited to statements regarding capacity, response-time,
performance, suitability for use or performance or products, shall be deemed to be a warranty for any
purpose, express or implied, or give rise to any liability whatsoever. THE AUTHORS DISCLAIM ALL
WARRANTIES WITH REGARD TO THIS WORK, INCLUDING WITHOUT LIMITATION ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE
AUTHORS OR ANY OF THEM BE LIABLE FOR ANY SPECIAL, EXEMPLARY, PUNITIVE,
INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH
THE USE OF THIS WORK.

No rights or licenses are hereby granted except the limited rights relative to copyright expressly set forth
above. Without limitation, no rights or licenses to any patents of the Authors are directly or implicitly
granted.

UNIX is a U.S. registered trademark of UNIX Systems Laboratories.
X Window System is a trademark of the Massachusetts Institute of Technology.

Copyright 1991, 1992 and 1993 by M.I.T. X Consortium, Data General Corporation and OMRON
Corporation (collectively, herein, the “Authors”); all rights reserved.

A vertical bar in the margin of a replacement page indicates
substansive technical change from the previous revision.

NOTICE

MTX Component Design Specification Table of Contents

iData General / OMRON / MIT . . Consortium

CHAPTER 1 Introduction 11
1.1 Revision History 11

1.2 Purpose 12

1.3 Major Chapter Sections 13

1.4 MTX Overview 15

1.5 Design Goals 15

1.6 Design Assumptions 15

1.7 Threads 16

1.8 Monitors 16

1.9 Abbreviations Used 17

CHAPTER 2 Main Server Thread 19
2.1 Overview 19

2.2 Data Objects 20

2.3 Concurrency Issues 21

2.4 Internal Organization and Implementation 21
2.4.1 Server Initialization 21

2.4.1.1Initialize Input Device Objects 22
2.4.2 Server Control: Wait On Signal to Wakeup 23
2.4.3 Server Cleanup 23
2.4.4 Extensions 23
2.4.5 How are other Threads Affected 23
2.4.6 R5 versus MTX 24

CHAPTER 3 Client Connection Thread 25
3.1 Overview 25

3.2 Data Objects 26

3.3 Concurrency Issues 26

3.4 Internal Organization and Implementation 27
3.4.1 Client Connections 27
3.4.2 Server Initialization and Control 27
3.4.3 Client Initialization and Control 27
3.4.4 R5 versus MTX 28

CHAPTER 4 Client Input Thread 31
4.1 Overview 31

4.2 Data Objects 32

4.3 Concurrency Issues 36

4.4 Internal Organization and Implementation 36
4.4.1 General Thread of Control 36

ii

Table of Contents MTX Component Design Specification

Data General / OMRON / MIT . . Consortium

4.4.2 Request Processing 37
4.4.2.1GrabServer 38

4.4.3 Client Output Delivery 38
4.4.3.1Flushing Output to Clients 39

4.4.4 Server Initialization and Control 39
4.4.5 Client Initialization and Control 39
4.4.6 DDX Layer 39
4.4.7 ScreenSaver 39
4.4.8 XDM Interface 40
4.4.9 FontServer Interface 40
4.4.10Extensions 40
4.4.11R5 versus MTX 40

CHAPTER 5 Client Output Thread 47
5.1 Overview 47

5.2 Data Objects 48

5.3 Concurrency Issues 49

5.4 Internal Organization and Implementation 49
5.4.1 General Thread of Control 49
5.4.2 R5 versus MTX 50

CHAPTER 6 Device Input Thread 51
6.1 Overview 51

6.2 Data Objects 52

6.3 Concurrency Issues 52

6.4 Internal Organization and Implementation 53
6.4.1 General Thread of Control 53
6.4.2 Communication with the DIT using a socketpair 54
6.4.3 Client Event Delivery 54
6.4.4 Event Processing 54
6.4.5 DDX Software Cursor 54
6.4.6 ScreenSaver 55
6.4.7 R5 versus MTX 55

CHAPTER 7 Signal Handling Thread 57
7.1 Overview 57

7.2 Data Objects 57

7.3 Concurrency Issues 57

7.4 Internal Organization and Implementation 58
7.4.1 Processed Signals 58
7.4.2 SHT Algorithm 58
7.4.3 SIGALRM Delivery 59

MTX Component Design Specification Table of Contents

iiiData General / OMRON / MIT . . Consortium

CHAPTER 8 Locking Summary 61
8.1 Overview 61

8.2 Locking Terminology 61

8.3 Server Objects 63

8.4 Objects protected by locks 65

8.5 Thread Lock Dependencies 67
8.5.1 MST 68
8.5.2 CCT 69
8.5.3 CIT 70
8.5.4 COT 73
8.5.5 DIT 73

CHAPTER 9 Resource Data Base Monitor 77
9.1 Overview 77

9.2 Data Objects 78
9.2.1 Resources 78
9.2.2 Resource Data Base Internal Structures 80

9.3 Concurrency Issues 80
9.3.1 Resource Lock Types 80
9.3.2 Resource Lock Modes 81
9.3.3 Locking Precedence 82

9.4 External Interface 83
9.4.1 Add or Free Resources 83
9.4.2 Locking Resources 83

9.4.2.1Lock Resource Individually (Generic Interface) 83
9.4.2.2Lock Resource Group (Generic Interface) 83
9.4.2.3Lock Core Resources 84

9.4.3 Extend Type or Class 84
9.4.4 Initialization and Termination 85
9.4.5 Miscellaneous 85

9.5 Internal Organization and Implementation 85
9.5.1 Locking Mechanisms 85

9.5.1.1Locking RDB Internal Structures 86
9.5.1.2Locking Individual Resources 88

9.5.2 Performance Considerations 90
9.5.2.1Locking Analysis 90
9.5.2.2Readers/Writers Lock 92
9.5.2.3Expanded Interface for Core Resources 92

CHAPTER 10 Pending Operation Queue Monitor 95
10.1 Overview 95

10.1.1 POQ Concepts 95

10.2 Data Objects 96
10.2.1 POQ Element 97
10.2.2Grab Server Element 98
10.2.3ConflictRec 98

iv

Table of Contents MTX Component Design Specification

Data General / OMRON / MIT . . Consortium

10.2.4ExtensionRec 99
10.2.5 WindowRec 99
10.2.6 Conflict Mask bits 100

10.2.6.1Read/Write Conflict Mask Bits 100
10.2.6.2Exclusive Conflict Mask Bits 102
10.2.6.3Misc. Conflict Mask Bits 103

10.3 Concurrency Issues 103
10.3.1 POQ Monitor Internals 103
10.3.2 POQ Access 104
10.3.3 Conflict Detection/Avoidance 105

10.3.3.1Window Conflicts 105
10.3.3.2Window Subtree Locking 106
10.3.3.3Region Conflicts 108
10.3.3.4Extension Conflicts 108

10.3.4Grab Server 109

10.4 External Interface 111
10.4.1 Initialization and Termination 111
10.4.2 Lock/Unlock 111
10.4.3 Come Up For Air 112
10.4.4 Grab Server 112
10.4.5 Convenience Macros 112

CHAPTER 11 Device/Event Monitor 113
11.1 Overview 113

11.2 Data Objects 114

11.3 Concurrency Issues 115

11.4 External Interface 115
11.4.1Data Locking 115
11.4.2Initialization and Termination 116
11.4.3Event Delivery 116
11.4.4Event Requests 116
11.4.5Device Requests 116
11.4.6Device Event 117
11.4.7Grab Requests 117
11.4.8Window Changes 117

11.5 Internal Organization and Implementation 117
11.5.1Locking Requirements 118
11.5.2Device/Event Access Routines 118
11.5.3Implementation Alternative 119

CHAPTER 12 Message Output Monitor 121
12.1 Overview 121

12.2 Data Objects 122

12.3 Concurrency Issues 123
12.3.1Message States and Transitions 123
12.3.2X Protocol Output Requirements 125
12.3.3Meeting the X Protocol Output Requirements 125

MTX Component Design Specification Table of Contents

vData General / OMRON / MIT . . Consortium

12.3.3.1Design Features 125
12.3.3.2Meeting Condition 1 126
12.3.3.3Meeting Condition 2 126
12.3.3.4Meeting Condition 3 126

12.3.4Message Delivery Threads 127
12.3.4.1Client Output Thread 127
12.3.4.2Client Input Thread 127

12.4 External Interface 127
12.4.1Initialization and Termination 127
12.4.2Get/Return Message List to/from Pool 127
12.4.3Send a Message to a Client 128
12.4.4Transfer Local Message Lists to Global Buffer 128
12.4.5Flush All Messages 128
12.4.6Grab Message Delivery for Client 128

12.5 Internal Organization and Implementation 129
12.5.1Message Structure 129
12.5.2Global Message Pool 130
12.5.3Message Buffers 131
12.5.4Client Output Threads 132
12.5.5Grab Message Delivery Implementation 134

12.5.5.1ProcGetImage Implementation 135

CHAPTER 13 Other MTX Locking 137
13.1 Font Subsystem 137

13.1.1Locking Alternatives 138
13.1.2Current Locking Mechanism 139
13.1.3Implementation details 139

13.1.3.1Method 2 139
13.1.3.2Method 3 139

13.2 Atom Database 140

CHAPTER 14 DDX Issues 143
14.1 Cursor Management 143

14.1.1Software cursor 144
14.1.2Hardware cursor 145

14.2 Reentrancy 146
14.2.1 miPolyArc 146
14.2.2miPaintWindow 146
14.2.3cfb Stipple (only when PPW == 4) 147

14.2.3.1Implementation 147
14.2.4NEXT_SERIAL_NUMBER 149
14.2.5Must_have_memory 150

14.3 Render Locking 151

CHAPTER 15 Other DIX Issues 152
15.1 ScreenSaver 152

15.2 Block and Wakeup Handler 153

vi

Table of Contents MTX Component Design Specification

Data General / OMRON / MIT . . Consortium

15.3 Server Extensions 154

15.4 PEX 154

15.5 Security 154

15.6 Priority Threads 154

CHAPTER 16 Server Extension Writers Guidelines 155
16.1 Introduction 155

16.2 Identify Extension Objects 157
16.2.1Identify PEX Objects 158

16.3 Identify Inter-Object Relations 158
16.3.1Identify PEX Inter-Object Relations 158

16.4 Identify Object Usage 160
16.4.1Identify PEX Object Usage 161

16.5 Identify Object Locking 162
16.5.1Identify PEX Object Locking 164

16.5.1.1Coarse Grained PEX Locks 165
16.5.1.2Medium Grained PEX Locks 166
16.5.1.3Fine Grained PEX Locks 167

16.6 Analyse Extension for Reentrancy 168
16.6.1Analyse PEX for Reentrancy 169

16.7 Implement the MTX-safe design 170
16.7.1Implement the PEX MTX-safe design 170

16.8 Extension Threads 173

16.9 Extension Initialization 173

16.10 Final Thoughts on Extension Design 173

APPENDIX A Data Objects 175
1.1 Entity-Relationship Diagram 175

1.2 Object Categories 177
1.2.1 Client 177
1.2.2 Color 177
1.2.3 Cursor 177
1.2.4 Device 177
1.2.5 DIXFontInfo 178
1.2.6 Extension 178
1.2.7 Event Masks 178
1.2.8 GC 179
1.2.9 OSComm 179
1.2.10OSFontInfo 179
1.2.11Pixmap 179
1.2.12Property 179
1.2.13Screen 180
1.2.14Selection 180
1.2.15Window 180

MTX Component Design Specification Table of Contents

viiData General / OMRON / MIT . . Consortium

1.3 Interrelationships of Object Categories 180

APPENDIX B Functionality Mapped to Design 183

APPENDIX C References 187

viii

Table of Contents MTX Component Design Specification

Data General / OMRON / MIT . . Consortium

MTX Component Design Specification List of Figures

ixData General / OMRON / MIT . . ConsortiumData General / OMRON / MIT . . Consortium

FIGURE 1 Structure Chart Notation 13

FIGURE 2 MTX Server Threads 14

FIGURE 3 Main Server Thread 20

FIGURE 4 Client Connection Thread 26

FIGURE 5 CCT Top Level Structure Chart 28

FIGURE 6 CCT Establish New Connections Structure Chart 29

FIGURE 7 Client Input Thread 32

FIGURE 8 Protocol Requests categorized by Object 33

FIGURE 9 Data Object Usage by Protocol Requests 35

FIGURE 10 CIT Top Level Structure Chart 41

FIGURE 11 CIT Proc Vector Logical Structure Chart 42

FIGURE 12 CIT Proc Windows Logical Structure Chart 43

FIGURE 13 CIT ProcCreateWindow Structure Chart 44

FIGURE 14 CIT CreateWindow Structure Chart 45

FIGURE 15 Client Output Thread 48

FIGURE 16 Device Input Thread 52

FIGURE 17 DIT deviceProc example Structure Chart 56

FIGURE 18 Lock Granularity for Shared Objects 62

FIGURE 19 Server Object Summary 65

FIGURE 20 Locks per object Summary 66

FIGURE 21 MST Locking Summary 68

FIGURE 22 CCT Locking Summary 69

FIGURE 23 CIT Locking Summary (INIT & NORMAL phases) 71

FIGURE 24 CIT Locking Summary (EXIT phase) 72

FIGURE 25 COT Locking Summary 73

FIGURE 26 DIT Locking Summary 75

FIGURE 27 Resource Data Base Monitor. 78

FIGURE 28 Resource and associated RDB node. 79

FIGURE 29 Core resource lock types. 81

FIGURE 30 RDB locking mechanism. 86

FIGURE 31 RDB Resource Lists. 87

FIGURE 32 Resource lockbits format. 89

FIGURE 33 Resource lock and unlock algorithms. 90

FIGURE 34 POQ Data structures 96

FIGURE 35 Processing requests on the POQ 105

FIGURE 36 Window hierarchy showing level numbers. 106

FIGURE 37 Expanding regions for packed pixel frame buffers. 108

x

MTX Component Design Specification

Data General / OMRON / MIT . . ConsortiumData General / OMRON / MIT . . Consortium

FIGURE 38 GrabServer example 110

FIGURE 39 Device/Event Monitor. 114

FIGURE 40 POQ requirements of lower level DEM routines. 118

FIGURE 41 Device Event Monitor Internals. 119

FIGURE 42 Message Output Monitor. 122

FIGURE 43 Message states and transitions. 124

FIGURE 44 Message contents. 129

FIGURE 45 Global Message Pool. 131

FIGURE 46 Message Buffer. 132

FIGURE 47 Message Delivery Algorithm. 133

FIGURE 48 Grab and Ungrab Message Delivery Algorithms. 135

FIGURE 49 Components in Font Subsystem 138

FIGURE 50 Atom Database 141

FIGURE 51 Building an MTX-safe extension 156

FIGURE 52 PEX Entity-Relationship Diagram 159

FIGURE 53 PEX Entity-Relationship Diagram 160

FIGURE 54 PEX Object Usage 162

FIGURE 55 PEX Lock Summary with Coarse Grained Locks 165

FIGURE 56 PEX Lock Summary with Medium Grained Locks 166

FIGURE 57 PEX Lock Summary with Fine Grained Locks 168

FIGURE 58 MTX-safe ProcPEXDispatch() 171

FIGURE 59 MTX-safe PEXCreateLookupTable() 172

FIGURE 60 Entity-Relationship Diagram 176

FIGURE 61 Object Category Interrelationships 181

FIGURE 62 Functionality Mapped to Threads 184

FIGURE 63 Functionality Mapped to Object Groups 185

MTX Component Design Specification Introduction

11Data General / OMRON / MIT . . ConsortiumData General / OMRON / MIT . . Consortium

CHAPTER 1 Introduction

1.1 Revision History

1.0 Initial draft version, September 6. 1991

2.0 Second draft version, January 9, 1992

• Add slight changes to the MST.

• Moved validation functionality from the CCT to the CIT.

• Add new connection validation changes to the CIT.

• Add a ticket taking scheme for message delivery to/from the COT buffers. This will
integrate more fully with event processing when it is defined in the third draft ver-
sion of this document.

• Completely rewrote the resource locking strategy.

• Add chapter on DDX issues (CHAPTER 14).

• Add screensaver and block/wakeup handler strategies (CHAPTER 15).

• Note: event processing may get redesigned. This redesign will be incorporated in the
third draft version.

3.0 Third draft version, June 6, 1992

• Simplify the layout of the chapters.

12

Introduction MTX Component Design Specification

Data General / OMRON / MIT . . Consortium

• Add details to MST, CCT, CIT.

• COT is created dynamically.

• Complete description of message delivery and ticket taking.

• Replace Window Lock List with Pending Operation Queue.

• Event processing does not need redesign; only re-implementation.

• Change details of DDX issues.

• Add Message Object Monitor chapter.

• Add Extension Writers Guidelines chapter.

4.0 Fourth draft version, October 23, 1992

• Replace ticket taking with local message buffering

• General threads chapter cleanup.

• Rewrite all locking chapters.

• Rewrite Extension Writers Guidelines chapter.

5.0 Fifth draft version, April 15, 1993

• Bring entire document up to date with evolving design.

• Add Signal Handling Thread chapter.

• Add Font Locking sections.

1.2 Purpose

This Component Design Specification (CDS) document provides a detailed description
of the major components of the Multi-Threaded X (MTX) server and shows how the
MTX server will be implemented. The CDS is the third in a series of documents that
will describe the MTX server. These documents follow closely the software develop-
ment cycle of functional analysis, functional design, detailed design, and implementa-
tion. (NOTE: in some development organizations, the CDS is also called the Detailed
Design Specification (DDS).)

Although some readers may not be familiar with a software design methodology, such
as Yourdon [MPJ88, Y84,Y85], we encourage you to become acquainted with these
engineering tools so that you may better understand the MTX server design.

The MTX server will be provided by the MIT X Consortium as a sample implementa-
tion using POSIX 1003.4a threads and conforming to the X Protocol as specified in
[SG90].

The design specified in the CDS is derived from the functionality specified in the MTX
Functional Design Specification (FDS). Whereas the FDS said “what it does”, the CDS
will be a basis for implementing the MTX server and tell implementors “how it is
done”.

MTX Component Design Specification Introduction

13Data General / OMRON / MIT . . ConsortiumData General / OMRON / MIT . . Consortium

1.3 Major Chapter Sections

Each chapter that describes an MTX component is organized into the following sec-
tions. A component is defined to be either a thread or a monitor. The thread encapsulates
code and dictates flow of control. The monitor encapsulates objects and dictates access
control.

1. Overview
This section presents a high-level description of the component. It explains the
major functions of the component and how they generally relate to the other compo-
nents of the MTX server.

2. Data Objects
Describes the data objects manipulated by the component. These objects can include
tables, queues, lists, global variables, etc. The interrelationship of these objects is
also described. The use of any locks associated with the data objects is also
described.

3. Concurrency Issues
This section explains the major concurrency issues that affect the component. These
issues include thread creation/deletion, mutex locking/unlocking, and interactions of
this component with other components via synchronization primitives (i.e. wait/sig-
nal).

4. Internal Organization and Implementation
Explains the overall organization of the component in a detail sufficient to start cod-
ing the implementation. This section describes how this component interfaces to the
different functional levels (such as DIX, OS, DDX, and MI). This section also dis-
cusses the MTX server implementation and how it differs from X11R5. FIGURE 1
shows the notation to be used in describing these differences. Note that double
barred boxes indicate system and library routines rather than MTX server routines.

.

FIGURE 1 Structure Chart Notation

Deleted Function
Call

New Function Modified Function

New Call To
Existing Function

pthread_create

Thread Function pthread_signal

Any Function

Condition Name

pthread_wait

Any Function

Condition Name

Mutex Name
argument

14

Introduction MTX Component Design Specification

Data General / OMRON / MIT . . Consortium

.

FIGURE 2 MTX Server Threads

Device
Input
Thread

Client
Connection
Thread

Client
Output
Thread

Client
Input
Thread

X
Client

Graphics
Hardware

Led
Bell

Message Data

Device Info

Client/Resources

Reply
Error
Event

New
Connection
Data

Connection
Request

Client
Input

Client
Output

Event

Device
Input

Graphics
Output Device

Control

Per Client

Main
Server
Thread

Keyboard
Mouse

LEGEND

data flow
thread create

thread

data

external object

data name

MTX Component Design Specification Introduction

15Data General / OMRON / MIT . . ConsortiumData General / OMRON / MIT . . Consortium

1.4 MTX Overview

The functionality of the MTX server will be the same as that of the current R5 sample
server. Although the functionality is equivalent, the implementation is not. The MTX
server will be implemented with threads and concurrency support whereas the R5 server
has a single thread of control.

The current X server looks for client requests, input events, and new client connections
within the dispatch code. By combining these three concurrent functions into one serial
loop, the interactivity of the R5 server suffers. Using threads, we can divide these func-
tions into separate flows of control. The general strategy is to not bind functionality into
threads such that there is a strong inter-thread coupling. Tightly coupled threads require
more code and synchronization overhead to support inter-thread communication (ITC).
This additional complexity makes debugging much more difficult and reduces modular-
ity.

A description of each of the MTX components and the corresponding server functional-
ity they exhibit is described in the following chapters. MTX components are either
threads or monitors. An overview is shown in FIGURE 2.

1.5 Design Goals

• Improve interactivity by preventing long protocol requests from locking out other
clients.

• Minimize the number of threads.

• Minimize thread context switching.

• Optimize rendering performance.

• Minimize mutex usage. Contended mutexes are expensive, and acquiring mutexes
requires automatic update of processor caches to maintain cache coherency.

• Don’t be lulled by the 80/20 rule. That is don’t generate a design that works for 80%
of the cases, but performs poorly for the other less used 20%.

• Avoid optimizations which severely penalize unexpected server use.

• Focus on 8 and 24 bit cfb.

1.6 Design Assumptions

• Framebuffer access is much slower than the ability of a CPU to want to write to it.
This bottleneck is even more apparent in a multi-processing environment.

• Support Symmetric Multi-Processing (SMP) platforms with 1 to 10 processors.

• Can modify the existing DIX/DDX interface.

• The server normally has no more than 4 clients executing requests on the server at
any one moment.

• There is a small amount of resource sharing. Most Client Input Threads will use
objects that are not shared with other threads.

16

Introduction MTX Component Design Specification

Data General / OMRON / MIT . . Consortium

1.7 Threads

A thread is a sequential flow of control. There may be more than one thread executing
within a process. Each thread shares the address space of the process with all other
threads that are created in the process. A thread has its own execution stack, errno, and
thread id. The benefits to using threads are that disjoint sets of code may be executed in
parallel while sharing a common code and data address space. Using threads increases
the concurrency and interactivity of a process, and allows for more efficient use of mul-
tiprocessor architectures.

In order to profit from kernels that support threads and multiprocessors, the MTX server
will be targeted to run only on operating systems that conform to the POSIX 1003.4a
standard [P1003.4a]. This standard supports

• the creation, control, and termination of threads

• the use of synchronization primitives by threads in a common, shared address space

• per thread data

Users of the X Window System who can not or do not want to use the MTX server will
be able to use a single-threaded version of the server.

Note: In this document, the words input and output refer to the server’s point of view.
For example, the Client Input Thread allows the server to take input from the X Client;
the Client Output Thread allows the server to send output to the X Client; the Device
Input Thread allows the server to take input from hardware devices.

CHAPTER 2 through CHAPTER 7 document the thread components in the MTX
Server.

1.8 Monitors

Read and write access to data structures that must be shared by many threads can be
effectively managed using the Hoare monitor. This programming construct encapsulates
the shared data object in a protective wrapper. The wrapper enforces mutual exclusion
by allowing only one thread access to the shared data object at any one moment. The
monitor is a global object that advertises all of the public access routines of the object to
the current set of threads.

The Hoare monitor is acceptable if the object requires exclusive access. But, it is a poor
performer when there are many more readers than writers. Typically, we would like to
allow multiple reads to occur concurrently while allowing only one write access at a
time.

This solution to the reader-writer problem is handled nicely by the crowd monitor. The
crowd monitor has guard procedures that decide when each thread may enter or leave a
reader or writer access group. These guard procedures arbitrate access to the protected
data object. The crowd monitor determines which group currently has access permis-
sion, and queues those threads that must wait.

MTX Component Design Specification Introduction

17Data General / OMRON / MIT . . ConsortiumData General / OMRON / MIT . . Consortium

Monitors will be used where possible to control access to shared server objects.

Locking of MTX server objects is insured by accessing objects only through monitors.
CHAPTER 8 through CHAPTER 13 describe this locking strategy and show the details
of the MTX monitor components. In those chapters where MTX monitors are
described, we discuss both the public interface and the internal design. We think that
extension writers will be most interested in the public interface while server developers
will be curious about the internal design of the monitor.

1.9 Abbreviations Used

CCT - Client Connection Thread
CIT - Client Input Thread
COT - Client Output Thread
DIT - Device Input Thread
MST - Main Server Thread
SHT - Signal Handling Thread
DE - Device Event Monitor
MOM - Message Output Monitor
POQ - Pending Operation Queue
RDB - Client/Resource Data Base

18

Introduction MTX Component Design Specification

Data General / OMRON / MIT . . Consortium

MTX Component Design Specification Main Server Thread

19Data General / OMRON / MIT . . ConsortiumData General / OMRON / MIT . . Consortium

CHAPTER 2 Main Server Thread

2.1 Overview

The Main Server Thread (MST) manages the global MTX server environment. This
thread initializes the different parts of the server and creates the Signal Handling Thread
for handling process-wide signals, the Device Input Thread(s) for processing device
input, and the Client Connection Thread(s) so that X Clients can establish communica-
tions with the server.

If the MST receives a wakeup signal, it cleans up the global MTX server environment
and checks to see if the server should reset or terminate. If it should reset, the MST rein-
itializes the server environment and starts the MTX setup all over again.

The MST is required to insure that server initialization and control is localized in only
one area of the server. As such, it is an implementation artifact and does not exhibit the
kind of core design functionality that we see in the other server threads. Threads other
than the MST, such as the Client Input Thread and the Device Input Thread, exist
because they exhibit core functionality.

20

Main Server Thread MTX Component Design Specification

Data General / OMRON / MIT . . Consortium

FIGURE 3 Main Server Thread

2.2 Data Objects

Creates the following:

• Resource Database Object

• Message Object

• Device/Event Object

• Pending Operation Queue Object

• Atom Database Object

• Server Object

Initialize
 MTX

Environment

Cleanup
 MTX

Environment

Resource
Database

Device/Event
Database

Pending Oper-
ation Queue

Message
Object

Server
Object

Atom
Database

MTX Component Design Specification Main Server Thread

21Data General / OMRON / MIT . . ConsortiumData General / OMRON / MIT . . Consortium

The Server Object consists of things such as the root window, window table, default
font path, default font, scratch GC, scratch stipple, etc.

2.3 Concurrency Issues

When the MTX server is started, it will automatically enter the Main Server Thread and
execute the initialization steps in serial order. No other threads will contend for server
data objects since no other threads exist at this point. After initializing the server data
objects, the MST will create threads for signal handling, device input, and client con-
nection. Then, the MST will sleep until it receives a wakeup signal. Receipt of the
wakeup signal indicates that the server should reset itself or terminate.

The MST will create the following threads:

• the Signal Handling Thread

• the Device Input Thread(s)

• the Client Connection Thread(s)

2.4 Internal Organization and Implementation

An overview of the MST is as follows:

mutex_t ServerMutex;
cond_t ServerCondition;

MST();
{

process the command line arguments (if any)
initialize MTX global locks
initialize Message Output Monitor
block all process-wide signals handled by the server
create Signal Handling Thread
lock ServerMutex
while (1)
{

server initialization
wait on ServerCondition to wakeup
server cleanup
if exit

break
}
unlock ServerMutex
exit(0);

}

2.4.1 Server Initialization

The MST inner loop will execute the following initialization steps in order:

22

Main Server Thread MTX Component Design Specification

Data General / OMRON / MIT . . Consortium

• Perform OS dependent initialization

• Initialize the Pending Operation Queue Monitor

• Create Well Known Sockets (only once)

• Initialize the Protocol Vectors (only once)

• Initialize the Resource Database Monitor

• Initialize the Serial Number Key

• Initialize the Atom Table object

• Initialize the Device/Event Object

• Initialize output to the Frame Buffer or graphics device objects

• Initialize extension objects

• Initialize the root window object

• Initialize device input object

• Initialize and Create the Device Input Thread(s)

• Initialize the default font objects

• Display the initial cursor and root window

• Initialize Selection objects

• Create the Client Connection Thread(s) (only once)

Note that there is no need for Block and Wakeup Handlers in MTX. Since R5 tries to
implement asynchronous activity in a single-threaded environment, these Handlers were
needed to give the appearance that the server was waiting. In MTX, the individual
threads will block; so these implementation artifacts are no longer needed.

After the server is initialized, the MST will sleep on a pthread signal. This signal will be
triggered by the exit of the last CIT when it detects that there are no more clients con-
nected to the MTX server, or when the server receives a UNIX signal.

2.4.1.1 Initialize Input Device Objects
MTX initializes the Device Input Thread (DIT) state and then, just as in R5, the MTX
server will make a call to the DDX function InitInput which calls AddInputDevice for
each core device. AddInputDevice creates the device object and registers the device
procs for the passed device. The device procs are written by the DDX implementor. For
example, in the sample implementation for the Luna88k, the device procs are called
OmronKbdProc and OmronMouseProc.

Next, the server will call InitAndStartDevices. For each device, the device proc that was
registered for the device object is called with DEVICE_INIT to finish the device spe-
cific initialization, and then called with DEVICE_ON to setup the proper file descriptor.

After InitAndStartDevices returns, MST calls the DDX routine CreateDeviceInput-
Thread. CreateDeviceInputThread is used to create the DIT. This mechanism allows the
DDX implementor to create multiple DITs if that is the goal. However, at this time the
sample implementation of CreateDeviceInputThread creates only one DIT.

MTX Component Design Specification Main Server Thread

23Data General / OMRON / MIT . . ConsortiumData General / OMRON / MIT . . Consortium

2.4.2 Server Control: Wait On Signal to Wakeup

After completing server initialization, the MST waits on a condition variable until it
receives a signal indicating that the cleanup phase should begin. The condition will be
signaled when any of the following occur:

• The server receives a SIGINT or SIGTERM signal

• The server receives a SIGHUP signal (typically sent by XDM)

• No clients remain connected to the server following a client disconnect

Signals are handled by the Signal Handling Thread (see CHAPTER 7).

2.4.3 Server Cleanup

When the MST has been signalled, it cleans up the global MTX server environment in
the following way:

• Terminate the Device Input Thread, wait for it to exit

• Initiate shutdown of all CITs still attached to the server

• Wait for all CITs to exit

• Close extensions

• Clean up the Resource Database

• Free all global objects

• Close down all input and output devices

• Free all font objects

If the server is to TERMINATE, then the MST performs device specific cleanup and
exits. If the server can be RESET, the MST cycles back to the above initialization steps
and repeats the environment setup for the server, except that the Client Connection
Thread is not recreated. The CCT is never terminated. New connection requests will
pend while the server is being reset (see Section 2.4.5).

2.4.4 Extensions

Extensions are initialized during the server initialization phase.

NOTE: Command line options may be used to specify dynamic loading of extensions.
In this way, the extension initialization code (InitExtensions) can determine which
extensions should be loaded. This saves space in the raw server executable if shared
libraries are used.

2.4.5 How are other Threads Affected

Client Connection Thread: The CCT must not allow new connection requests to be
processed while the server is resetting or terminating. The MST holds the ServerMutex
at all times during initialization and cleanup, only releasing the mutex when it eventu-
ally sleeps on the ServerCondition. The CCT will acquire the same mutex after detect-
ing a new connection request but before processing it. Thus, the CCT can only process
new connections when the MST is sleeping on the ServerCondition (see CHAPTER 3).

24

Main Server Thread MTX Component Design Specification

Data General / OMRON / MIT . . Consortium

This also assures the MST will not begin a cleanup phase while a connection request is
being processed.

Client Input Thread: The MST should be signaled to initiate a server reset when a dis-
connecting client will result in no clients being connected to the server. Just prior to
thread termination, a CIT will check to see if other CITs remain active in the server. If
not, the terminating CIT will signal the MST to initiate a reset (see CHAPTER 4).

Device Input Thread: The DIT will be signaled by the MST to shutdown during a
server reset or termination. The MST will wait on the ServerCondition for a signal from
the DIT that it has shutdown (see CHAPTER 6).

Signal Handling Thread: The signal handling thread will signal the MST to initiate a
server reset or termination upon receipt of certain UNIX signals. A global variable will
indicate whether the server is to reset or terminate (see CHAPTER 7).

2.4.6 R5 versus MTX

The functionality of the Main Server Thread is similar to that found in main in main.c.
In the R5 implementation, the dispatch exists so that new client connections, new proto-
col requests, and new device input can be arbitrated fairly by the server. In the MTX
server, however, these functions are broken into independent flows of control. There-
fore, the dispatch loop has been removed from the MTX server.

MTX Component Design Specification Client Connection Thread

25Data General / OMRON / MIT . . ConsortiumData General / OMRON / MIT . . Consortium

CHAPTER 3 Client Connection Thread

3.1 Overview

The Client Connection Thread (CCT) receives a request by an X client to connect to the
X server. New client connections are processed by a single CCT as shown in FIGURE
4. Upon accepting a client connection, the CCT immediately creates a Client Input
Thread to continue the validation processing. This CIT validation includes all new con-
nection authentication and authorization

26

Client Connection Thread MTX Component Design Specification

Data General / OMRON / MIT . . Consortium

FIGURE 4 Client Connection Thread

3.2 Data Objects

Each Client Connection Thread will only access the OS Connection object via the Con-
nectionMutex. The OS Connection object includes:

• ConnectionMutex

• numberOfClients

• Transport Layer connection info (such as HOST)

• Some access control info

3.3 Concurrency Issues

The CCT cannot process connection requests while the Main Server Thread is resetting
or terminating the server. After detecting a connection request, the CCT will obtain the
ServerMutex lock before processing. The MST holds this lock at all times during initial-
ization and cleanup, thus assuring that the CCT will not process connection requests
during this phase.

The CCT creates the:

• Client Input Thread

1) Listen to WellKnownSocket
2) Accept Connection Requests
3) Create Client Input Thread

Client Connection Thread

1) Validate Connection Request
2) Send Connection Reply/Info
3) Begin Execution if Valid

Client Input Thread

Connection
Request

Connection
Reply

MTX Component Design Specification Client Connection Thread

27Data General / OMRON / MIT . . ConsortiumData General / OMRON / MIT . . Consortium

3.4 Internal Organization and Implementation

3.4.1 Client Connections

The CCT listens for new connections on the well-known ports. When a new connection
is detected, the CCT accepts the connection and creates the CIT so that a separate con-
nection unique to the requestor can be created. The CCT does not perform client specific
connection validation; this is left to the newly created CIT.

Since the CCT only validates the connection type, it would be possible to have CCTs
that are connection type specific. For example, the default CCT handles socket connec-
tions, but one could also have a CCT that performed shared memory connections. In the
shared memory CCT, only shared memory type operations are validated before creating
the CIT. In this way, the CIT is not dependent on the type of connection existing
between the server and the X client.

CCT()
{

lock ServerMutex
while(1)
{

unlock ServerMutex
read well known port
lock ServerMutex
if valid connection type

store client connection info
create CIT

else
refuse connection

}
unlock ServerMutex

}

In addition to decoupling the connection validation from the client validation, we push
the validation of the client requesting a connection out of the CCT so that the CCT does
not block during the validation handshake.

3.4.2 Server Initialization and Control

The CCT(s) is created once by the MST during server initialization and never destroyed,
except if the server terminates. The MST takes this into account when resetting the
server.

3.4.3 Client Initialization and Control

The CCT authenticates the connection specific information for the new client. The CCT
does not check the authority of the client to be connected to the server. This is per-
formed by the Client Input Thread.

28

Client Connection Thread MTX Component Design Specification

Data General / OMRON / MIT . . Consortium

This two level method of validating the client unbinds the connection specific checks
from the client specific checks, and allows the CCT to continue accepting connections
without being dependent on the actual validation of the client. If the connection fails,
the CCT gives the reason and closes the network connection.

3.4.4 R5 versus MTX

The R5 server checked for new client connections, along with handling device input and
protocol requests, in WaitForSomething. This module has been eliminated because these
three functions do not require serial execution.

The CCT uses EstablishNewConnection to complete the connection type semantics and
prepare the CIT to perform client validation. The top level structure chart is shown in
FIGURE 5 and the EstablishNewConnection procedure in FIGURE 6.

FIGURE 5 CCT Top Level Structure Chart

ConnectionThread

select EstablishNewConnections

ClientInputThread

pthread_create

MTX Component Design Specification Client Connection Thread

29Data General / OMRON / MIT . . ConsortiumData General / OMRON / MIT . . Consortium

FIGURE 6 CCT Establish New Connections Structure Chart

EstablishNewConnection

LastSelectMask

WellKnowConnections

clients

ClientRec

OsCommRec

GetTimeInMillis

CloseDownClient

ffs

accept

SavedAllClients

AllClients

ConnectionTranslation

NextAvailableClientErrorConnMax

CloseDownFileDescriptor

XdmcpOpenDisplay

OsCommPtr

pthread_create

ClientInputThread
In CIT

In CIT

30

Client Connection Thread MTX Component Design Specification

Data General / OMRON / MIT . . Consortium

MTX Component Design Specification Client Input Thread

31Data General / OMRON / MIT . . ConsortiumData General / OMRON / MIT . . Consortium

CHAPTER 4 Client Input Thread

4.1 Overview

The Client Input Thread (CIT) processes client protocol requests for the connected cli-
ent only. There exists a CIT for each client connected to the MTX server. The function
of this thread (see FIGURE 7) is to process requests for its assigned client while adher-
ing to the atomicity and serial constraints for client event and reply notification.

When the CIT is first created, it validates the new client connection. The CIT accepts
the client connection if successful and adds the client information to the client database.

After validation, normal CIT operations will begin.

32

Client Input Thread MTX Component Design Specification

Data General / OMRON / MIT . . Consortium

FIGURE 7 Client Input Thread

4.2 Data Objects

The CIT may access any data object in the server if it has a handle to that object. How-
ever, the CIT usually refers to objects that only it creates and manipulates (a notable
exception is the window manager CIT). This “locality of access” means that for most
accesses, the CIT only needs to refer to it’s own objects in the Client Resource Table.
Those objects typically touched by a particular class of protocol requests is shown in
FIGURE 8.

MTX Component Design Specification Client Input Thread

33Data General / OMRON / MIT . . ConsortiumData General / OMRON / MIT . . Consortium

FIGURE 8 Protocol Requests categorized by Object

 2 ChangeWindowAttributes
 3 GetWindowAttributes
 4 DestroyWindow
 5 DestroySubWindows (11)
 6 ChangeSaveSet
 7 ReparentWindow (8,10)
 8 MapWindow
 9 MapSubWindows
10 UnmapWindow
11 UnmapSubWindows
12 ConfigureWindow
13 CirculateWindow
14 GetGeometry
15 QueryTree
40 TranslateCoords

1 CreateWindow
WINDOW

 18 ChangeProperty
 19 DeleteProperty
 20 GetProperty
 21 ListProperties
 114 RotateProperties

PROPERTY

22 Selection
23 GetSelectionOwner

SELECTION

24 ConvertSelection

25 SendEvent
35 AllowEvents

EVENT

26 GrabPointer
27 UngrabPointer

POINTER

30 ChangeActivePointerGrab
38 QueryPointer
39 GetMotionEvents
41 WarpPointer
105 ChangePointerControl
106 GetPointerControl
116 SetPointerMapping
117 GetPointerMapping

28 GrabButton
29 UngrabButton

BUTTON

16 InternAtom
17 GetAtomName

ATOM

31 GrabKeyboard
32 UngrabKeyboard

KEYBOARD

33 GrabKey
34 UngrabKey
44 QueryKeymap
100 ChangeKeyboardMapping
101 GetKeyboardMapping
102 ChangeKeyboardControl
103 GetKeyboardControl
104 Bell
118 SetModifierMapping
119 GetModifierMapping

36 GrabServer
37 UngrabServer

SERVER

42 SetInputFocus
43 GetInputFocus

FOCUS

45 OpenFont
46 CloseFont

FONT

47 QueryFont
48 QueryTextExtents
49 ListFonts
50 ListFontsWithInfo (47)
51 SetFontPath
52 GetFontPath

53 CreatePixmap
54 FreePixmap

PIXMAP

55 CreateGC (56)
56 ChangeGC (46)

GC

57 CopyGC (46)
58 SetDashes
59 SetClipRectangles
60 FreeGC

61 ClearArea
62 CopyArea

GC AREA

63 CopyPlane

64 PolyPoint
65 PolyLine

GC 2D

66 PolySegment
67 PolyRectangle
68 PolyArc
69 FillPoly
70 PolyFillRectangle
71 PolyFillArc

72 PutImage
73 GetImage

IMAGE

74 PolyText8
75 PolyText16 (74)

TEXT

76 ImageText8
77 ImageText16 (76)

78 CreateColormap
79 FreeColormap

COLORMAP

80 CopyColormapAndFree (78,89)
81 InstallColorMap
82 UninstallColormap (81)
83 ListInstalledColormap
84 AllocColor
85 AllocNamedColor (84)
86 AllocColorCells
87 AllocColorPlanes
88 FreeColors
89 StoreColors
90 StoreNamedColor (89)
91 QueryColors
92 LookupColor

93 CreateCursor (73)
94 CreateGlyphCursor (73)

CURSOR

95 Free Cursor
96 RecolorCursor
97 QueryBestSize

98 QueryExtension
99 ListExtensions

EXTENSION

107 SetScreenSaver
108 GetScreenSaver

SCREENSAVER

115 ForceScreenSaver (1,8)

109 ChangeHosts
110 ListHosts

ACCESSCONTROL

111 SetAccessControl

112 SetCloseDownMode
113 KillClient

CLIENT

127 NoOperation
MISC

34

Client Input Thread MTX Component Design Specification

Data General / OMRON / MIT . . Consortium

Any CIT may potentially access any of the object categories listed in FIGURE 9.
Because the Client Input Thread executes X Protocol requests, object usage for these
threads should be based on the type of request. FIGURE 9 shows each protocol request
and the data object categories used by that request. Only the major DIX and OS data
objects are used. Each data object category can be accessed in the following ways:

• R - read only

• W - read/write

• D - delete

• C - Create

• * - W,D,C can all occur

MTX Component Design Specification Client Input Thread

35Data General / OMRON / MIT . . ConsortiumData General / OMRON / MIT . . Consortium

FIGURE 9 Data Object Usage by Protocol Requests

C
lie

nt

C
ol

or

C
ur

so
r

D
ev

ic
e

G
C

P
ix

m
ap

P
ro

pe
rt

y

Sc
re

en

Se
le

ct
io

n

W
in

do
w

D
IX

F
on

tI
nf

o

O
SC

om
m

O
SF

on
tI

nf
o

E
ve

nt
M

as
ks

A
to

m
Ta

bl
e

Data Object Category

Window

Atom
Property

Selection

Event

Pointer

Button

Keyboard

Server

Focus

Font

Pixmap

GC

GCArea

GC2D

Image

Text

Colormap

Cursor

Extension

ScreenSaver

AccessContrl

Client
Misc

Protocol
Requests

W

R

W R W R W *

W W
W *D

R*W

RR RW

W

W

W

R

W

W

R

R

RW

W

*

W

*

*

R

R

C

W *RR

RR *

R RCW

R

R

*

W

R

*

W

R

W

W

R

RRR W

W RR R

R RR*W

R* RRW

R

W W* WW R

R

W W*

Category

36

Client Input Thread MTX Component Design Specification

Data General / OMRON / MIT . . Consortium

4.3 Concurrency Issues

Each Client Input Thread may contend with other CITs and the Device Input Thread
(DIT) for access to the Device/Event Object. All CITs and the DIT will use the Device/
Event Monitor to arbitrate access.

All CITs may contend for resources in the Client Resource Table. The Client Resource
locking strategy (see CHAPTER 9), will control access to these contended resources.

All events, replies, and errors generated as a side-effect of the protocol request are buff-
ered up into Message Objects. The Message Object Monitor allows the CIT to send
messages directly back to the X client, or by creating a Client Output Thread for batch
sending. The creation of COTs allows the CIT to be independent of how long the X cli-
ent may wait before reading on its end.

This thread must share the Message, Device/Event and Client Resource Table objects
with other CITs and the DIT.

The CIT writes to Message Objects that may be used by a COT.

The last remaining CIT will signal the Main Server Thread to wakeup before it exits.

4.4 Internal Organization and Implementation

4.4.1 General Thread of Control

CIT()
{

/* the CIT has just been created by the CCT */
lock ConnectionMutex
validate new X client
if (not valid client connection)

unlock ConnectionMutex
return failure status to X client
exit thread

numberOfClients++;
unlock ConnectionMutex
allocate local message buffer

while(1)
{

Read request block from client
if read fails

break
for <each request in the read block>
{

increment client sequence number
get RDB locks for this specific protocol request
insert element in POQ and wait until no conflicts

MTX Component Design Specification Client Input Thread

37Data General / OMRON / MIT . . ConsortiumData General / OMRON / MIT . . Consortium

if <request requires “come-up-for-air”>
FlushAllMessages()

execute request, buffering all events/replies/errors
(client output messages) locally

if <any events/errors/replies generated by request>
transfer local buffer entries to global buffer

remove node from POQ list
release RDB locks

}
FlushAllMessages()

}

Close down client connection
if last CIT

if terminateAtReset
signal MST to terminate the server

else
signal MST to reset server

signal ServerCond in case MST waiting in KillAllClients
FlushAllMessages()

}

Render related protocol requests are designed so that they check periodically (for exam-
ple, every time they enter FillSpans) to see if they should pend for another server opera-
tion that needs to manipulate their render window. When that operation completes, the
render protocol request continues. This feature is called “coming-up-for-air”. It allows,
for example, a long render request to be interrupted in order to move a software cursor
across the render window, or have the window manager repaint the border windows. It
is an optimization that enhances user interactivity. This optimization may prove useful
for extension requests, provided that it can be implemented without violating any atom-
icity requirements of a request.

4.4.2 Request Processing

The CIT will block until there is a pending client request. This thread handles the byte
ordering of the network connection to the client. The request is processed similar to the
function pointer mechanism used in the dispatch loop for (* client-requestVector[MA-
JOROP])(client).

These protocol requests are grouped into the functional categories described in FIGURE
8, which lists the requests by the type of objects that they access. In the diagram, the
protocol request codes are also listed. Some codes invoke other codes; in this case the
invoked codes are parenthesized. For example, ReparentWindow(7) does most of Map-
Window(8) and UnMapWindow (10).

38

Client Input Thread MTX Component Design Specification

Data General / OMRON / MIT . . Consortium

All CITs will be able to process any protocol request including any pre-initialized exten-
sions. Since each protocol request accesses both shared and private resources, locking
policies will be invoked to protect multiple threads from corrupting shared resources.

For shared resources, the Client/Resource Locking strategy (see CHAPTER 9) is the
arbitration policy. The CIT locks objects in the Client/Resource Database and inserts the
protocol request on the Pending Operation Queue (POQ).

If a CIT wishes to gain access to event related objects (such as the event mask, Gra-
bRec, or DeviceIntRec), the Client Input Thread will request access through the Device/
Event Monitor (see CHAPTER 11). The Device/Event Monitor will insure exclusive
access to the event related objects and block other requesting threads to enforce serial
access to the event related objects.

As noted above, render protocol requests will have the ability to come-up-for-air.

All events that are generated as side effects of processing the protocol request will be
processed by the Device/Event Monitor. Events, replies, and errors from a protocol
request are then wrapped into messages via the Message Output Monitor. Errors and
replies that originate in the Client Input Thread will be sent directly to the correspond-
ing X Client. Events targeted for multiple clients will be buffered for batch processing
by a Client Output Thread. In the MTX sample implementation, the COT is created
dynamically within the Message Output Monitor (see CHAPTER 12) as the result of a
flush, potentially initiated from a CIT. The MOM could be altered to allow the option of
dynamic or static COTs, but only dynamic COTs are provided in the sample implemen-
tation.

The CIT will also handle client shutdown activities. When a client dies or is killed, the
appropriate CIT will free resources from the Client/Resource Table and cleanup local
data structures. If the CIT represents the last client connected to the MTX server, then it
will notify the Main Server Thread to wakeup and reset the server.

4.4.2.1 GrabServer
A CIT cannot continue to process requests while another CIT has a pending GrabServer.
The CIT will block on the POQ (see CHAPTER 10) until the grabbing CIT performs an
UngrabServer request.

4.4.3 Client Output Delivery

Client Output, which includes events, errors, and replies, can be generated by the proto-
col request back to the X client. All protocol requests can return errors. Some protocol
requests can generate. events and replies. See [SG90] for a more detailed description.

The Device Input Thread can also generate events for an X client. In fact, multiple CITs
and the DIT may generate events to the same X client at the same time. All events gen-
erated by a single request in the CIT, or device input in the DIT, must be queued for
delivery indivisibly with respect to events generated by other threads. See CHAPTER
12, the Message Output Monitor, for details about how the Client Output atomicity
requirements are met.

MTX Component Design Specification Client Input Thread

39Data General / OMRON / MIT . . ConsortiumData General / OMRON / MIT . . Consortium

See CHAPTER 5 for a description of how the COT arranges for client output delivery.

4.4.3.1 Flushing Output to Clients
 Flushing of all client messages occurs at the following locations of the server:

• at the end of the CIT’s request block loop

• after the CIT has executed a client shutdown but before the thread exits

• after processing a device input event from DIT

• inside request loop of CIT but prior to arbitrarily long requests

4.4.4 Server Initialization and Control

The CCT creates the CIT during the client initialization phase. When the MST is told to
reset, it will wait until the last CIT has exited before proceeding with the cleanup phase.

4.4.5 Client Initialization and Control

A CIT is created by the Client Connection Thread when an X Client wants to connect to
the server. The CCT will validate the connection by running the EstablishNewConnec-
tion functionality. After the new connection is established, the CIT is created.

 The CIT will then run the InitialConnection and EstablishConnection functions. These
requests are used to validate the connection and trade server information with the X Cli-
ent. The new client sends a connection setup packet that contains the byte ordering for
its host machine and authorization information.

Client specific authentication of the client connection is performed by the CIT as soon
as it is created by the CCT. This frees the CCT to service other new client connections
and should speed the process of starting up an X session.

After successfully validating the connection, the X client is considered to exist on the
server side. The CIT then enters a continuous loop of reading protocol requests and
operating on those requests. It only exits the loop when client termination is requested
either voluntarily by the client, or involuntarily as a result of a server exception.

4.4.6 DDX Layer

If there is output to be sent to any devices, a CIT will manage that activity through the
DDX layer. This includes writing to the graphics output device and generating feedback
for the feedback devices (i.e. led and bell). Writing to the graphics output devices is a
frequent operation and could generate an unacceptable number of thread context
switches if this functionality were placed in a thread other than the Client Input Thread.

4.4.7 ScreenSaver

A CIT will control the screen saver through the GetScreenSaver, SetScreenSaver, and
ForceScreenSaver protocol requests (see CHAPTER 15).

40

Client Input Thread MTX Component Design Specification

Data General / OMRON / MIT . . Consortium

4.4.8 XDM Interface

The initial connection by the display manager client to MTX will create a CIT dedicated
to XDM. The XDM CIT is used to communicate XDMCP requests to the server.

4.4.9 FontServer Interface

The X server side of the Font Server (FS) will be adjusted so that only the CIT request-
ing information from the Font Server will block on the FS connection. The X server will
not need to receive Suspended status from the FS, nor will it need the work in progress
queues to handle pending FS requests.

4.4.10 Extensions

Extensions should model the approach used by core requests to lock server objects.

4.4.11 R5 versus MTX

In the R5 server, the select fires when one of the file descriptors detects an X Client
request. Each file descriptor is correlated with a connected client via the AllClients
mask. The index into the mask is used to find the correct client record. The client record
points to the input and output OS Comm records for the client. The protocol request is
read from the input OS Comm record. The dispatch loop uses the major operation code
of the request as an index into the request vector. This entry in the request vector is a
pointer to the correct protocol function that will process the X Client’s request.

The MTX server localizes the processing of client requests to a CIT. Therefore, there is
no need for all of the various client connection masks that are found in R5’s connec-
tion.c file. The CIT does a blocking read on the client’s request socket; thus removing
the dependence on the slow select call. Once the CIT detects a request, it does not have
to use or manipulate any complicated masks to determine the client record or the client
id. The CIT can immediately jump to validation of the request.

A CIT will have one input buffer and not manage a pool of buffers as currently exists in
the R5 server. This approach allows the CIT to avoid extra locks in a performance criti-
cal path of the server and trades-off the possibility of returning an input buffer to the
system for clients that rarely issues requests.

FIGURE 10 shows that the top level of the Client Input Thread is a subset of the old dis-
patch code.

FIGURE 11 through FIGURE 12 shows a logical division of the requests into protocol
request categories with the create window request of the window category used as an
example. This example continues in FIGURE 13 through FIGURE 14.

The create window example is typical of how each protocol request XXX is handled.
The top layer of the ProcXXX module write locks the row of the Client Resource Table
corresponding to the passed client. Generally, most of the processing is performed in the
XXX module. The XXX module may access the Message Object and the Device/Event
Object to send events or generate grabs. Access to the Device/Event Object is guarded

MTX Component Design Specification Client Input Thread

41Data General / OMRON / MIT . . ConsortiumData General / OMRON / MIT . . Consortium

by the DeviceEventMutex. Each batch of event related calls is preceded by a lock of
DeviceEventMutex and then succeeded by the paired unlock of DeviceEventMutex.

FIGURE 10 CIT Top Level Structure Chart

ALLOCATE_LOCAL__

ProcessInputEvents

FlushIfCriticalOutputPending

size_MaxClients

WaitForSomething

nready

clientsReady

ReadRequestFromClient

client

result

CloseDownClient

client

_client_requestVector_

client

result

SendErrorToClient

MinorOpcodeOfRequest

client
MAJOROP

MinorOpcodeOfRequest
errorValue

result

minoropcodeclient

FlushAllMessages

KillAllClients

DEALLOCATE_LOCAL__

clientReady

clientReady

Dispatch

ClientInputThread

ClientPtr

42

Client Input Thread MTX Component Design Specification

Data General / OMRON / MIT . . Consortium

FIGURE 11 CIT Proc Vector Logical Structure Chart

ProcVector

resultclient

_Proc_Windows_

_Proc_Atom_

_Proc_Property_

_Proc_Selection_

_Proc_Event_

_Proc_Pointer_

_Proc_Button_

_Proc_Keyboard_

_Proc_Server_

_Proc_Focus_

_Proc_Font_

_Proc_Pixmap_

_Proc_GC_

_Proc_GC_Area_

_Proc_GC_2D_

_Proc_Image_

_Proc_Text_

_Proc_Colormap_

_Proc_Cursor_

_Proc_Extension_

_Proc_ScrSaver_

_Proc_Access_Ctrl_

_Proc_Client_

_Proc_Misc_

MTX Component Design Specification Client Input Thread

43Data General / OMRON / MIT . . ConsortiumData General / OMRON / MIT . . Consortium

FIGURE 12 CIT Proc Windows Logical Structure Chart

_Proc_Windows_

resultclient

ProcCreateWindow

ProcChangeWindowAttributes

ProcGetWindowAttributes

ProcDestroyWindow

ProcDestroySubWindows

ProcChangeSaveSet

ProcReparentWindow

ProcMapWindow

ProcMapSubwindows

ProcUnmapWindow

ProcUnmapSubwindows

ProcConfigureWindow

ProcCirculateWindow

ProcGetGeometry

ProcQueryTree

ProcTranslateCoords

44

Client Input Thread MTX Component Design Specification

Data General / OMRON / MIT . . Consortium

FIGURE 13 CIT ProcCreateWindow Structure Chart

ProcCreateWindow

client result

REQUEST__

REQUEST_AT_LEAST_SIZE__

LEGAL_NEW_RESOURCE__

xCreateWindowReq

xCreateWindowReq

wid
client

LookupWindow

client
rid

CreateWindowOnes

mask
length

AddResource

Boolwid
RT_WINDOW

stuff

pParent

result

pWin

client

pWin

test

LOCK_AND_VERIFY_WINDOW

UNLOCK_WINDOW_

client.CRT_M
client.CRT_M

MTX Component Design Specification Client Input Thread

45Data General / OMRON / MIT . . ConsortiumData General / OMRON / MIT . . Consortium

FIGURE 14 CIT CreateWindow Structure Chart

CreateWindow

stuff
pParent

result

pWin

client

FindWindowWithOptional

pParent pWindowOpt

AllocateWindow

pScreen pWin

SetWindowToDefaults

pWin

MakeWindowOptional

pWin

RegionInit

RealChildHead

xfree__

pWin

RegionRec
NullBox

1

pParent
pHead

SetWinSize SetBorderSize

pWin

pWin

CreateWindow

DeleteWindow

PositionWindow

RecalculateDeliverableEvents

ChangeWindowAttributes

EventSelectForWindow

WindowHasNewCursor

DeliverEvents

SubSend__

pWin

pWin

wid
pthread_mutex_lock

DeviceEventObject_M

pthread_mutex_unlock

EvnteObject_M

46

Client Input Thread MTX Component Design Specification

Data General / OMRON / MIT . . Consortium

MTX Component Design Specification Client Output Thread

47Data General / OMRON / MIT . . ConsortiumData General / OMRON / MIT . . Consortium

CHAPTER 5 Client Output Thread

5.1 Overview

Route messages from the server to the client.

The Client Output Thread (COT) thread (see FIGURE 15) is created within the Message
Output Monitor (see CHAPTER 12) when a message flush occurs. The flush will have
been initiated by a Client Input Thread or the Device Input Thread when these threads
must send messages to X Clients.

A COTs sole purpose is to gather messages for a target client that have already been
generated and queued, synchronize with other threads that may be trying to write to the
same target client, and write the message data to the target clients socket.

48

Client Output Thread MTX Component Design Specification

Data General / OMRON / MIT . . Consortium

FIGURE 15 Client Output Thread

5.2 Data Objects

The Client Output Thread will use:

• the connection information for the client

• client specific data

• the global message buffer built by the producer thread

• message delivery locks, for synchronization

Transmit
Message

Sync
Delivery
Threads

Global Message Buffer

Flush

ClientOutput

Connection Data

Message Delivery Locks

Client Data
Locate
Messages
To Flush

Flushable
Messages

Locked
Socket

MTX Component Design Specification Client Output Thread

49Data General / OMRON / MIT . . ConsortiumData General / OMRON / MIT . . Consortium

5.3 Concurrency Issues

COTs are created only when needed and terminate after completing the delivery task.
When the server communicates with clients via blocking I/O, it is required that the
server avoid situations where a CIT or DIT might block because a certain client is not
reading its messages. So, a COT was created for the sole purpose of delivering a set of
messages to target client and then terminating. With this mechanism, a CIT or DIT will
not block due to a client who has a full socket buffer.

There is one exception where COTs are not created for delivering messages. If a CIT is
delivering messages directly back to the client to which it is associated, the CIT can
deliver the messages. In this case, it is considered reasonable for a CIT to block if the
client is not reading from its socket buffer. Note that round trip requests will always
have a reply delivered from the CIT that generates it. This optimization saves a thread
creation and context switch.

5.4 Internal Organization and Implementation

5.4.1 General Thread of Control

COT()
{

look at implicit MessageDeliveryLock information
if <thread already waiting for same implicit lock>

thread exit
obtain implicit MessageDeliveryLock

lock global message buffer
locate sublist of flushable messages
if <sublist is not empty>

remove sublist from list of all messages pending for client
unlock global message buffer
build IOV array locally
writev to socket
free sublist

else
unlock global message buffer

release implicit MessageDeliveryLock
thread exit

}

It is possible that more than one COT for the same client may exist at the same time.
One of them will grab the implicit MessageDeliveryLock for the target client, one will
wait for the currently executing COT to finish, while all others will realize that any cur-
rent messages will eventually be flushed by the waiting thread and merely terminate
without doing anything.

50

Client Output Thread MTX Component Design Specification

Data General / OMRON / MIT . . Consortium

Note that if a client is not reading from its socket, it is possible that a COT will block
when it issues a writev(2). Messages destined for that client will begin to accumulate in
the global message buffer. A mechanism is built into the Message Output Monitor that
will try to detect this situation when memory cannot be allocated and will try to reclaim
these messages (see CHAPTER 12).

The normal case for CIT generated events/replies/errors is that the CIT itself will be
able to flush to the client and a COT will not have to be created.

Since most protocol requests will send directly to the socket, and DIT events happen rel-
atively infrequently, creating COTs on the fly is a good idea because it will minimize
thread management. We don’t want idle COTs sitting around taking up precious kernel
structures. Also, with fewer COTs, the chance of a cache hit to find a COT is greater. It
is believed that many threads based kernels can create threads very fast, perhaps even
faster than it takes a thread to context switch into memory.

5.4.2 R5 versus MTX

In R5, client output delivery is handled by the protocol request or device input code at
the moment it needs to deliver using WriteToClient(). In MTX, we decouple the delivery
of messages for the CIT, and we will decouple the delivery of events for the DIT. So, the
WriteToClient interface will be changed for producer threads to reflect the algorithm
described in CHAPTER 4.

Since the COT uses many of the Message Object Monitor features, please see CHAP-
TER 12 for more details on message delivery.

MTX Component Design Specification Device Input Thread

51Data General / OMRON / MIT . . ConsortiumData General / OMRON / MIT . . Consortium

CHAPTER 6 Device Input Thread

6.1 Overview

The Device Input Thread (DIT) waits for device input and routes device events to
selected Client Output Threads.

There will be one Device Input Thread to handle all device input to the server, although
the ability to create multiple DITs will not be prohibited. In R5, device input from the
mouse, keyboard, trackball, etc. currently executes in the ProcessInputEvents function.
This function has device independent and device dependent code based on the type of
device. The Device Input Thread (see FIGURE 16) will accept input from one or more
registered devices. This thread will process the device input, format the correct device
events, and deliver the device events through Client Output Threads.

52

Device Input Thread MTX Component Design Specification

Data General / OMRON / MIT . . Consortium

FIGURE 16 Device Input Thread

6.2 Data Objects

The Device Input Thread will have priority access to the Device/Event object category,
but will primarily read these objects. Note that queued events will be read and deleted
by the CIT after a playback request is made, or when the device is thawed. Access to the
event related objects will be accessed through the Device/Event Object Monitor. See
CHAPTER 11 for a list of the event related objects.

6.3 Concurrency Issues

The DIT will place an element on the Pending Operation Queue (POQ) and set the
appropriate conflict mask bits. The DIT must contend with other CIT threads for access
to the POQ.

The DIT also contends with CITs for access to the Device/Event Object when propagat-
ing the event up the window tree (see CHAPTER 11).

MTX Component Design Specification Device Input Thread

53Data General / OMRON / MIT . . ConsortiumData General / OMRON / MIT . . Consortium

6.4 Internal Organization and Implementation

6.4.1 General Thread of Control

In the MST:

• setup a socketpair for the DIT using two fake file descriptors

• add the second fake file descriptor to the DIT’s select mask to notify select that some
device or the DIT has changed state

DIT()
{

setup dummy client record for the DIT
register a local message buffer for the DIT
unblock SIGALRM signal

insert POQ entry
set screen saver
remove POQ entry

while(1)
{

update select mask
select
if (select fails)

if (interrupted by signal)
continue

else
break

if fake file descriptor has been selected
read value from socket
switch on value

device_enabled_or_disabled:
continue

set_screen_saver:
insert POQ entry
set screen saver
remove POQ entry

destroy_DIT:
break

insert POQ entry
process input events, propagate, and build event list
set screen saver
remove POQ entry
FlushAllMessages()

}

unregister a local message buffer for the DIT
free dummy client

54

Device Input Thread MTX Component Design Specification

Data General / OMRON / MIT . . Consortium

lock DITMutex;
signal DITCond
unlock DITMutex;
pthread_exit();

}

The DIT works on one device event at a time. Each device event is propagated from the
event window up the window tree to the root. See CHAPTER 11 for details about this
process.

6.4.2 Communication with the DIT using a socketpair

When the DIT is initialized by the MST, two socketpair file descriptors are initialized.
The purpose of the socketpair is to allow other threads to notify the DIT when device
state changes, or the DIT should exit. Since the DIT could be waiting on the select() to
finish, adding the second socket of the socketpair to the select mask insures that the DIT
is notified as soon as possible.

When a thread writes a value into the first socket of the socketpair, the DIT reads that
value from the second socket of the socketpair and takes the actions as outlined above.

The value device_enabled_or_disabled is written into the first file descriptor by the
AddEnabledDevices() and the RemoveEnabledDevices() functions when the active
device database changes. This mechanism is also used to notify the DIT that the screen
saver should be reset, and is used by the MST to destroy the DIT during server cleanup.

6.4.3 Client Event Delivery

The DIT will receive raw device events, locate the event window, and propagate the
events up the tree. As the DIT builds this list of events, it will insert them in its local
message buffers. When all events are built, the DIT will create a COT(s) to deliver the
events, if deliverable, to the correct client socket.

6.4.4 Event Processing

The DIT must take in raw device input, both from the core devices and any extension
devices. In the case of the core devices, KeyPress and KeyRelease are accepted from the
Keyboard device, and ButtonPress, ButtonRelease, and MotionNotify are accepted from
the Mouse device. Each raw event is processed as described in CHAPTER 11.

6.4.5 DDX Software Cursor

See Section 14.1 in CHAPTER 14.

MTX Component Design Specification Device Input Thread

55Data General / OMRON / MIT . . ConsortiumData General / OMRON / MIT . . Consortium

6.4.6 ScreenSaver

If ScreenSaver is OFF and the DIT detects that no input has been received during the
ScreenSaverInterval, the DIT will set ScreenSaver ON.

If ScreenSaver is set ON and device input is received, the DIT sets ScreenSaver OFF.

See CHAPTER 15.

6.4.7 R5 versus MTX

The MTX implementation of the DIT selects on those devices that were initialized and
started by the Main Server Thread when the Device Input Thread was created. The
select is similar to that found in the WaitForSomething module of the R5 implementa-
tion.

Another implementation dependency is in the call to process the device input. For
instance, on the Omron Luna88k, when a device has input for the selected DIT, the DIT
calls ProcessInputEvents. These are similar to the calls seen in R5.

The DIT must do blocking I/O, suggested in the structure chart by the select. When the
thread wakes up it will call ProcessInputEvents. The only other changes necessary are
pthread locks/unlocks of the DeviceEventMutex before calling any DIX event-related
functions (e.g. *processInputProc(), AddInput(), etc.).

56

Device Input Thread MTX Component Design Specification

Data General / OMRON / MIT . . Consortium

FIGURE 17 DIT deviceProc example Structure Chart

deviceProc

deviceProcExample

DeviceInputThread

pthread_create

select ProcessDeviceEvent

MTX Component Design Specification Signal Handling Thread

57Data General / OMRON / MIT . . ConsortiumData General / OMRON / MIT . . Consortium

CHAPTER 7 Signal Handling Thread

7.1 Overview

The Signal Handling Thread (SHT) is responsible for detecting and taking action on all
process-wide signals that are handled by the MTX server. Assuring that all server pro-
cessed signals are delivered to the SHT will relieve all other threads from the responsi-
bility of providing for potential interrupts during certain system calls.

7.2 Data Objects

A signal set consisting of all signals to be processed by the MTX server is initialized at
server start-up time and then accessed but never modified. The only data modified by
the SHT is the global flag, serverException, which indicates whether the server should
be terminated or recycled.

7.3 Concurrency Issues

The SHT is created by the MST during initial start-up and remains active until the
server terminates.

The set of all signals to be processed by the server must be initialized and blocked by
the MST prior to any other thread being created. When new threads are eventually cre-

58

Signal Handling Thread MTX Component Design Specification

Data General / OMRON / MIT . . Consortium

ated, they will inherit the set of blocked signals as created by the MST. The SHT will
specifically ask for delivery of blocked signals, thus assuring all server processed sig-
nals are delivered only to the SHT.

7.4 Internal Organization and Implementation

7.4.1 Processed Signals

The MTX server will catch the following signals and take the associated action.

• SIGHUP: Signal the MST to recycle the server.

• SIGINT: Signal the MST to terminate the server.

• SIGTERM: Signal the MST to terminate the server.

• SIGALRM: Signal the DIT to enable screen saver.

• SIGPIPE: Catches and ignores signal.

7.4.2 SHT Algorithm

The MST is the only thread that modifies its signal state and does this prior to creating
any new threads. Threads inherit the signal state of their creator, thus, all threads will
have identical signal states since the MST is at the root of the thread hierarchy (note cur-
rent exception to this in Section 7.4.3). Prior to creating any threads, the MST will block
all signals that are to be processed by the MTX server. A signal that is blocked by all
threads will pend until the signal state of the threads changes (never for MTX) or a
thread requests delivery of a pending signal via the sigwait() system call. The following
is the SHT algorithm.

SHT()
{

for (;;)
switch (sigwait(<mtx signal mask>)
{

case SIGINT:
case SIGTERM:

signal MST to terminate server
break

case SIGHUP:
signal MST to reset server
break

case SIGALRM:
enable screen saver
break

case SIGPIPE:
default:

break
}

}

MTX Component Design Specification Signal Handling Thread

59Data General / OMRON / MIT . . ConsortiumData General / OMRON / MIT . . Consortium

7.4.3 SIGALRM Delivery

SIGALRM is special cased in the implementation as of this writing. It is unclear in
Draft 6 of P1003.4a as to whether SIGALRM is delivered like other signals on a pro-
cess-wide basis, or if it is delivered only to the thread that initiates the alarm. The cur-
rent implementation allows for SIGALRM to be delivered only to the thread that
initiates the alarm. Only the DIT will initiate an alarm and thus must be capable of
receiving a SIGALRM. If a future Draft of P1003.4a defines SIGALRM delivery to be
process-wide, the implementation could be cleaned up by assuming all signals are han-
dled via the SHT.

60

Signal Handling Thread MTX Component Design Specification

Data General / OMRON / MIT . . Consortium

