
the real story behind Wayland and X

or:

every single LWN comment is wrong

(except mine.)

'let me summarize every
wayland discussion on the internet:
I'VE SEEN A WINDOW SYSTEM

SO I KNOW HOW THEY SHOULD WORK
PAY ATTENTION TO MEEEEEE'

— Adam Jackson

wait, who are you?

older than X11

younger than X10

started packaging XFree86 in 2002

joined X.Org at my first LCA in 2004

built the first modular X.Org server

Australia was too hot, moved to Helsinki

(in February, having seen snow once)

worked at Nokia on:

770, N800, N810, N900, N9

this was the state of the art in 2006

no acceleration

gtk+ 2.6

three-level submenus

... and RealPlayer/Helix

wrote input hotplug support

D-Bus/HAL support (sorry ...)

(some months pass ...)

surprise!

oh dear.

overnight career change:

much less keyboards

much more fixing visual glitches

for the next five years.

but now I work on Wayland!

hey internet peanut gallery

krh was an X developer too

but enough about me

what is X11?

classic X11

mechanism, not policy

a mechanism for any client to
enforce its idiot wishes on everyone

immediate-mode rendering

draw rectangles!

draw text!

blit images!

basic window management

reparent windows!

move windows!

window borders — solid OR dashed!

one keyboard

one three-button mouse

network transparent!

(hi LWN)

pretty straightforward really

COOL WINDOW SYSTEM BRO

[time passes]

XFree86

hardware got complicated

multiple input devices — kinda

keyboards with bells on — literally

multiple GPUs — again

rendering got complicated too

OpenGL

accelerated video

tasteful & minimal themes

window management got awful

multiple desktops

weird and wonderful window types

shaped windows?!

everything got out of hand

'Programming X is like reading one
of those French philosophers where

afterwards you start wondering whether
you really know anything for sure.'

 — Thomas Thurman

at least 25 more extensions

thousands more pages of spec

thanks to politics,

never touched the core protocol

or core server code

working around deficiencies

not fixing them.

they also worked around poor OSes

ran video BIOSes

... sometimes through an x86 emulator

performed system power management

legacy I/O port management

PCI bus management — in assembly!

binary loader — ELF, COFF, a.out

the X server became its own OS.

the dumbest OS you've ever seen.

could generate a config file for you

not smart enough to just *(%!{@# use it

life was, basically, terrible

JUST LIKE BLADE RUNNER

...

X.Org

we modularised the build

(yay!)

but a bit too much

(boo!)

345 git modules — oops

but mostly we deleted stuff

xserver 1.0.2: 879,403 lines of code

xserver 1.0.2: 879,403 lines of code

xserver now: 562,678 lines of code

my net contribution:

 + 83,336
 - 186,985

eventually ran out of stuff to delete

another drawing model: XRender

four input stacks

core X11

XI 1.0, 2.0 & 2.2

sidenote:

three people on this earth
understand X input

really wish I wasn't one of them

five display management extensions

core X11

Xinerama

RandR 1.0, 1.2 & 1.4

four buffer management models

core X11

DRI

SHM

DRI2

hey internet peanut gallery

SHM and DRI2

don't work over the network

X isn't network-transparent.

we shifted all the paradigms

themes got harder

we drew them client-side

fonts got harder

we drew them client-side

subwindows got in the way

we moved them client-side

window management got harder

we got the WM to draw everything

so what is the X server doing?

[dramatic pause]

...

not a lot.

clients render locally

clients tell the X server what they've drawn

the server asks the WM to display it

the window manager decides what to draw

and where

the X server displays what the WM rendered

the window manager is the new X server

and what's the X server?

really bad IPC

why really bad?

gedit startup:

130 blocking InternAtom calls

34 blocking GetProperty calls

116 property change requests

usually spends 25ms waiting for requests

usually spends 25ms waiting for requests

sometimes spends 1428ms

why?

when you resize
the server will draw on the window

this usually involves waiting for the GPU

which can take ages

when it's finished, the client will draw
over it anyway

so it's latent because it's

uselessly drawing the wrong thing

can we do better?

thought experiment:

a radically different model

clients render locally

clients tell the server what they've drawn

the server decides what to draw

and where

we just cut out the middle man

that's Wayland, in four slides.

X11 took about 90

hey internet peanut gallery

you say:

'X is totally The UNIX Way.'

UNIX says:

'Do one thing and do it well.'

what gives?

and while we're at it

'Those who do not understand UNIX
are condemned to quote Henry Spencer.'

— Kristian Høgsberg

right, so, Wayland

it's tractable

'every frame is perfect'

what's a frame?

a set of pixels that should be shown
in a window coherently at one time

remember X11 is immediate-mode

'draw a rectangle here'
'blit this image'

'render this text'

there's no boundary between them they'll
be displayed

at random times

you'll see incom s

you'll see incomplete results

DRI2 almost fixes this, but not really

Wayland is solely frame-based

client says, 'display this'

server displays it

job done.

'every frame is perfect'

what's 'perfect'?

no flicker

no flashes

no tearing

ever.

it makes us look like amateurs.

descriptive, not prescriptive

pop-up window in X11:

give me all keyboard input

give me all mouse input

put this window exactly here

screensaver in X11:

give me all keyboard input

give me all mouse input

put this window fullscreen, topmost

result:

can't use volume keys during pop-up

can't use volume keys during screensaver

screensaver won't trigger during pop-up

it's been broken for 26 years

we tried to fix it

we can't.

IT'S 2013.

THIS IS NOT OK.

pop-up window in Wayland:

'this window is a pop-up window,
 triggered from this click.
 do the right thing, please'

it's all up to the compositor

gee but that sounds complex!

so are window managers.

yes, you can write bad compositors

don't run them.

oh, and the screensaver

it's part of the compositor

random clients don't take your password

event driven

listening for input devices in X11

register for device notifications

ask for device list

wait for reply

parse reply

parse notifications, if any

listening for input devices in Wayland

register for device notifications

parse notifications, if any

dynamic everything by default.

proper object lifetimes

X Error: BadDevice (invalid input device)
Major opcode: 144
Minor opcode: 19

familiar?

objects in X11 can disappear at any time

the error is fatal by default

Wayland object destruction is client-side

listeners vs. clients

everything not global in X is per-client

e.g. input behaviour changes depending on
the version of the client's input extension

fine, right?

modern browser has four components:

browser frontend

toolkit used by backend

browser backend

plugins used by backend

your frontend supports Xi 2.1

your toolkit supports Xi 2.3

your backend supports Xi 2.0

your plugins only support core X11

what happens now?

your guess is as good as mine.

in Wayland, they all register listeners

listeners are versioned

everyone gets exactly what they want

sounds great, but can i use it?

Weston

reference compositor

straightforward plugin system

external 'shells' for WM/dock/etc

supports X11 clients

output: KMS, fbdev, Raspberry Pi

rendering: GLES or Pixman (software)

and hardware video overlays

QMLCompositor

easily write a compositor in QML

has too much C++ for my liking

but it does work

Mutter

has an out-of-date port

hybrid X11/Wayland compositor

GNOME Shell was running on it

GTK+, Clutter, Qt

ports all in upstream git

GStreamer

waylandvideosink exists, needs work

oh, and just one more thing

remember the bit about IPC?

guess what its worst case is ...

remoting!

can we do better?

kill the roundtrips: local compositor

easy on the bandwidth: image compression

hey presto, we're now on par with VNC

we've been experimenting already

experimental branch for Weston already up

we think it will be better than X

we think it can't be worse than X

and on that bombshell ...

subliminal message:

http://www.collabora.com

